Spark plasma sintering and age hardening of an Al–Zn–Mg alloy powder blend

[1]  M. Brochu,et al.  Consideration of particle rearrangement during the modeling of spark plasma densification of Al–Mg alloy powders , 2015 .

[2]  M. Brochu,et al.  Interdiffusion between copper and nickel powders and sintering map development during spark plasma sintering , 2015 .

[3]  M. Brochu,et al.  Spark plasma sintering of prealloyed aluminium powders , 2015 .

[4]  M. Brochu,et al.  Spark plasma sintering of an Al-based powder blend , 2015 .

[5]  B. S. Murty,et al.  On Joule heating during spark plasma sintering of metal powders , 2014 .

[6]  S. Qu,et al.  93W–5.6Ni–1.4Fe heavy alloys with enhanced performance prepared by cyclic spark plasma sintering , 2014 .

[7]  E. Olevsky,et al.  Modeling residual porosity in thick components consolidated by spark plasma sintering , 2014 .

[8]  E. Lavernia,et al.  Synthesis of γ-TiAl by Reactive Spark Plasma Sintering of Cryomilled Ti and Al Powder Blend, Part I: Influence of Processing and Microstructural Evolution , 2014, Metallurgical and Materials Transactions A.

[9]  B. Yilbas,et al.  Laser Forming and Welding Processes , 2013 .

[10]  R. Torrecillas,et al.  Nanostructured Al-ZrAl3 materials consolidated via spark plasma sintering: Evaluation of their mechanical properties , 2013 .

[11]  M. Hebda,et al.  Effect of atmosphere on sintering of Alumix 431D powder , 2012 .

[12]  A. Molinari,et al.  Densification mechanisms in spark plasma sintering: Effect of particle size and pressure , 2012 .

[13]  T. Laoui,et al.  Spark plasma sintering of metals and metal matrix nanocomposites: a review , 2012 .

[14]  J. Kong,et al.  Evolution of fractal features of pores in compacting and sintering process , 2011 .

[15]  D. P. Bishop,et al.  Metallurgical assessment of an emerging Al–Zn–Mg–Cu P/M alloy , 2009 .

[16]  Dustin M. Hulbert,et al.  A discussion on the absence of plasma in spark plasma sintering , 2009 .

[17]  Dustin M. Hulbert,et al.  The Absence of Plasma in "Spark Plasma Sintering" , 2008 .

[18]  Z. A. Munir,et al.  The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method , 2006 .

[19]  O. Es-Said,et al.  On the correlation of mechanical and physical properties of 7075-T6 Al alloy , 2005 .

[20]  Z. A. Munir,et al.  Spark plasma synthesis from mechanically activated powders: a versatile route for producing dense nanostructured iron aluminides , 2004 .

[21]  J. Kaufman Introduction to Aluminum Alloys and Tempers , 2000 .

[22]  M. Omori Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS) , 2000 .

[23]  K. Stiller,et al.  Investigation of precipitation in an Al–Zn–Mg alloy after two-step ageing treatment at 100° and 150°C , 1999 .

[24]  T. Sercombe,et al.  Surface oxide and the role of magnesium during the sintering of aluminum , 1999 .

[25]  H. Inui,et al.  Microstructure of Nb–Al powders consolidated by spark plasma sintering process , 1997 .

[26]  S. Risbud,et al.  Clean grain boundaries in aluminium nitride ceramics densified without additives by a plasma-activated sintering process , 1994 .

[27]  T. S. Srivatsan,et al.  Rapid solidification processing with specific application to aluminium alloys , 1992 .

[28]  E. Lavernia,et al.  A tem study of the microstructures of a modified 7075 and X2020 aluminum alloys produced by liquid dynamic compaction , 1986 .

[29]  F. Froes,et al.  Surface Oxides in P/M Aluminum Alloys , 1985 .

[30]  William D. Callister,et al.  Materials Science and Engineering: An Introduction , 1985 .

[31]  L. F. Mondolfo Aluminum alloys: Structure and properties , 1976 .