Advection of Biomass Burning Aerosols towards the Southern Hemispheric Mid-Latitude Station of Punta Arenas as Observed with Multiwavelength Polarization Raman Lidar

[1]  O. Schrems,et al.  LIDAR measurements of cirrus clouds in the northern and southern midlatitudes during INCA (55°N, 53°S): A comparative study , 2002 .

[2]  Albert Ansmann,et al.  Smoke of extreme Australian bushfires observed in the stratosphere over Punta Arenas, Chile, in January 2020: optical thickness, lidar ratios, and depolarization ratios at 355 and 532 nm , 2020 .

[3]  T. Eck,et al.  An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET , 2001 .

[5]  A. Ansmann,et al.  Potential of polarization lidar to provide profiles of CCN- and INP-relevant aerosol parameters , 2015 .

[6]  H. Kalesse,et al.  Vertical aerosol distribution in the southern hemispheric midlatitudes as observed with lidar in Punta Arenas, Chile (53.2° S and 70.9° W), during ALPACA , 2019, Atmospheric Chemistry and Physics.

[7]  Albert Ansmann,et al.  Vertical profiling of Saharan dust with Raman lidars and airborne HSRL in southern Morocco during SAMUM , 2009 .

[8]  R. Draxler,et al.  NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System , 2015 .

[9]  M. Kahnert,et al.  Observations of the spectral dependence of linear particle depolarization ratio of aerosols using NASA Langley airborne High Spectral Resolution Lidar , 2015 .

[10]  C. Zerefos,et al.  Raman lidar and sunphotometric measurements of aerosol optical properties over Thessaloniki, Greece during a biomass burning episode , 2003 .

[11]  Wildfires as a source of airborne mineral dust – revisiting a conceptual model using large-eddy simulation (LES) , 2018, Atmospheric Chemistry and Physics.

[12]  Albert Ansmann,et al.  LACROS: the Leipzig Aerosol and Cloud Remote Observations System , 2013, Remote Sensing.

[13]  Doina Nicolae,et al.  Experimental techniques for the calibration of lidar depolarization channels in EARLINET , 2017 .

[14]  L. Lee,et al.  Occurrence of pristine aerosol environments on a polluted planet , 2014, Proceedings of the National Academy of Sciences.

[15]  D. Ceburnis,et al.  Contribution of feldspar and marine organic aerosols to global ice nucleating particle concentrations , 2016 .

[16]  C. Stubenrauch,et al.  A global climatology of upper-tropospheric ice supersaturation occurrence inferred from the Atmospheric Infrared Sounder calibrated by MOZAIC , 2012 .

[17]  Nobuo Sugimoto,et al.  Characteristics of dust aerosols inferred from lidar depolarization measurements at two wavelengths. , 2006, Applied optics.

[18]  A. Ansmann,et al.  Injection of mineral dust into the free troposphere during fire events observed with polarization lidar at Limassol, Cyprus , 2014 .

[19]  R. Engelmann,et al.  Depolarization and lidar ratios at 355, 532, and 1064 nm and microphysical properties of aged tropospheric and stratospheric Canadian wildfire smoke , 2018, Atmospheric Chemistry and Physics.

[20]  V. Freudenthaler,et al.  EARLINET instrument intercomparison campaigns: overview on strategy and results , 2015 .

[21]  B. Kärcher,et al.  Microscale characteristics of homogeneous freezing events in cirrus clouds , 2017 .

[22]  A. Stohl,et al.  Optical characteristics of biomass burning aerosols over Southeastern Europe determined from UV-Raman lidar measurements , 2008 .

[23]  R. Engelmann,et al.  An overview of the first decade of Polly NET : an emerging network of automated Raman-polarization lidars for continuous aerosol profiling , 2016 .

[24]  R. Engelmann,et al.  Contrasting the impact of aerosols at northern and southern midlatitudes on heterogeneous ice formation , 2011 .

[25]  G. Casassa,et al.  Weather Observations Across the Southern Andes at 53°S , 2003 .

[26]  Ulla Wandinger,et al.  Target categorization of aerosol and clouds by continuous multiwavelength-polarization lidar measurements , 2017 .

[27]  Alan H. Strahler,et al.  Global land cover mapping from MODIS: algorithms and early results , 2002 .

[28]  Albert Ansmann,et al.  Lidar and Atmospheric Aerosol Particles , 2005 .

[29]  R. Engelmann,et al.  Surface matters: limitations of CALIPSO V3 aerosol typing in coastal regions , 2014 .

[30]  A. Ansmann,et al.  Dust mass, cloud condensation nuclei, and ice-nucleating particle profiling with polarization lidar: updated POLIPHON conversion factors from global AERONET analysis , 2019, Atmospheric Measurement Techniques.

[31]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[32]  A. Ansmann,et al.  Aerosol-type-dependent lidar ratios observed with Raman lidar , 2007 .

[33]  Albert Ansmann,et al.  Portable Raman Lidar Polly XT for Automated Profiling of Aerosol Backscatter, Extinction, and Depolarization , 2009 .

[34]  R. Engelmann,et al.  Aerosol profiling with lidar in the Amazon Basin during the wet and dry season , 2012 .

[35]  T. Petäjä,et al.  Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories , 2018 .

[36]  R. Engelmann,et al.  North-south cross sections of the vertical aerosol distribution over the Atlantic Ocean from multiwavelength Raman/polarization lidar during Polarstern cruises , 2013, Journal of geophysical research. Atmospheres : JGR.

[37]  P. Seifert,et al.  The day-to-day co-variability between mineral dust and cloud glaciation: a proxy for heterogeneous freezing , 2019, Atmospheric Chemistry and Physics.

[38]  C. Zerefos,et al.  Optical properties of different aerosol types: seven years of combined Raman-elastic backscatter lidar measurements in Thessaloniki, Greece , 2009 .

[39]  A. Stohl,et al.  Raman lidar observations of aged Siberian and Canadian forest fire smoke in the free troposphere over Germany in 2003 : Microphysical particle characterization , 2005 .

[40]  Ulla Wandinger,et al.  EARLINET Single Calculus Chain - overview on methodology and strategy , 2015 .

[41]  Harald Saathoff,et al.  A New Ice Nucleation Active Site Parameterization for Desert Dust and Soot , 2017 .

[42]  Ina Mattis,et al.  EARLINET Single Calculus Chain – technical – Part 2: Calculation of optical products , 2016 .

[43]  Volker Freudenthaler,et al.  About the effects of polarising optics on lidar signals and the Δ90 calibration , 2016 .

[44]  Albert Ansmann,et al.  Vertically resolved separation of dust and smoke over Cape Verde using multiwavelength Raman and polarization lidars during Saharan Mineral Dust Experiment 2008 , 2009 .

[45]  Albert Ansmann,et al.  Profiling of Saharan dust and biomass-burning smoke with multiwavelength polarization Raman lidar at Cape Verde , 2011 .

[46]  R. Ferrare,et al.  Aerosol classification using airborne High Spectral Resolution Lidar measurements – methodology and examples , 2011 .

[47]  Albert Ansmann,et al.  The automated multiwavelength Raman polarization and water-vapor lidar PollyXT: The neXT generation , 2016 .

[48]  R. Engelmann,et al.  Further evidence for significant smoke transport from Africa to Amazonia , 2011 .