Correction to: Convergence rate for a Radau hp collocation method applied to constrained optimal control

The original version of this article unfortunately contained an error in two equations on page 25, inside the proof of Proposition 6.1.

[1]  W. Hager,et al.  Dual Approximations in Optimal Control , 1984 .

[2]  William W. Hager,et al.  A unified framework for the numerical solution of optimal control problems using pseudospectral methods , 2010, Autom..

[3]  Gamal N. Elnagar,et al.  Pseudospectral Chebyshev Optimal Control of Constrained Nonlinear Dynamical Systems , 1998, Comput. Optim. Appl..

[4]  William W. Hager,et al.  Runge-Kutta methods in optimal control and the transformed adjoint system , 2000, Numerische Mathematik.

[5]  Ivo Babuska,et al.  The p and h-p Versions of the Finite Element Method, Basic Principles and Properties , 1994, SIAM Rev..

[6]  I. Michael Ross,et al.  Costate Estimation by a Legendre Pseudospectral Method , 1998 .

[7]  J. Frédéric Bonnans,et al.  Computation of order conditions for symplectic partitioned Runge-Kutta schemes with application to optimal control , 2006, Numerische Mathematik.

[8]  Qi Gong,et al.  Connections between the covector mapping theorem and convergence of pseudospectral methods for optimal control , 2008, Comput. Optim. Appl..

[9]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[10]  W. Hager,et al.  Optimality, stability, and convergence in nonlinear control , 1995 .

[11]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[12]  Sigal Gottlieb,et al.  Spectral Methods , 2019, Numerical Methods for Diffusion Phenomena in Building Physics.

[13]  William W. Hager,et al.  Adaptive mesh refinement method for optimal control using nonsmoothness detection and mesh size reduction , 2015, J. Frankl. Inst..

[14]  W. Hager Multiplier methods for nonlinear optimal control , 1990 .

[15]  Anil V. Rao,et al.  Direct Trajectory Optimization and Costate Estimation via an Orthogonal Collocation Method , 2006 .

[16]  I. Michael Ross,et al.  Direct trajectory optimization by a Chebyshev pseudospectral method , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[17]  William W. Hager,et al.  Convergence Rate for a Gauss Collocation Method Applied to Unconstrained Optimal Control , 2016, Journal of Optimization Theory and Applications.

[18]  William W. Hager,et al.  Direct trajectory optimization and costate estimation of finite-horizon and infinite-horizon optimal control problems using a Radau pseudospectral method , 2011, Comput. Optim. Appl..

[19]  W. Kang Rate of convergence for the Legendre pseudospectral optimal control of feedback linearizable systems , 2010 .

[20]  Wei Kang,et al.  The rate of convergence for a pseudospectral optimal control method , 2008, 2008 47th IEEE Conference on Decision and Control.

[21]  J. Elschner,et al.  The $h$-$p$-Version of Spline Approximation Methods for Mellin Convolution Equations , 1993 .

[22]  William W. Hager,et al.  The Euler approximation in state constrained optimal control , 2001, Math. Comput..

[23]  W. Hager,et al.  Lipschitzian stability in nonlinear control and optimization , 1993 .

[24]  Victor M. Zavala,et al.  Large-scale nonlinear programming using IPOPT: An integrating framework for enterprise-wide dynamic optimization , 2009, Comput. Chem. Eng..

[25]  Anil V. Rao,et al.  Direct Trajectory Optimization Using a Variable Low-Order Adaptive Pseudospectral Method , 2011 .

[26]  Ivo Babuška,et al.  The h-p version of the finite element method , 1986 .

[27]  P. Williams Jacobi pseudospectral method for solving optimal control problems , 2004 .

[28]  Yvon Maday,et al.  Polynomial interpolation results in Sobolev spaces , 1992 .

[29]  Anil V. Rao,et al.  GPOPS-II , 2014, ACM Trans. Math. Softw..

[30]  William W. Hager,et al.  Convergence Rate for a Gauss Collocation Method Applied to Unconstrained Optimal Control , 2015, J. Optim. Theory Appl..

[31]  Gamal N. Elnagar,et al.  The pseudospectral Legendre method for discretizing optimal control problems , 1995, IEEE Trans. Autom. Control..

[32]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[33]  Jerald L Schnoor,et al.  What the h? , 2008, Environmental science & technology.

[34]  Anil V. Rao,et al.  A ph mesh refinement method for optimal control , 2015 .