Charging and Collection of Submicron Particles in Two-Stage Parallel-Plate Electrostatic Precipitators

ABSTRACT A well-defined two-stage ESP experiment was carried out in the submicron particle size range. The experimental setup consisted of five components: a clean wind tunnel, a submicron particle generation system, an aerosol sampling and transport system, a submicron particle number concentration measurement system, and a pilot-scale two-stage parallel-plate ESP. Experimental collection efficiency data were obtained with a GMD of 0.03–0.2 μm and a GSD of about 1.67 for air velocities between 1.9 and 4.1 m/s under the nominal operation condition of two-stage ESP. The experimental data were then compared with the results of a numerical collection efficiency model which takes into consideration charging rate equations, particle equations of motion, and collection performance models. The comparison showed good agreement. It was confirmed from the comparison that the partial charging regime, where a portion of incoming particles is not charged, exists when the particle size range is below about 0.03 μm This...

[1]  Zhao Zhibin,et al.  Investigations of the Collection Efficiency of an Electrostatic Precipitator with Turbulent Effects , 1994 .

[2]  Richard E. Matick,et al.  Potentials in D-C corona fields , 1960, Transactions of the American Institute of Electrical Engineers, Part I: Communication and Electronics.

[3]  David S. Ensor,et al.  Changing Requirements for Air Filtration Test Standards , 1994 .

[4]  K. Okazaki,et al.  Transmission and deposition behavior of aerosols in sampling inlets , 1987 .

[5]  S. Hassid,et al.  Turbulent deposition of charged particles under the influence of an external electric field , 1988 .

[6]  H. A. Luther,et al.  Applied numerical methods , 1969 .

[7]  T. Lin,et al.  The Characteristics of Ionic Wind and Its Effect on Electrostatic Precipitators , 1994 .

[8]  A. Mcfarland,et al.  Evaluation of Select Approximations for Calculating Particle Charging Rates in the Continuum Regime , 1989 .

[9]  Wallace B. Smith,et al.  A mathematical model for calculating electrical conditions in wire‐duct electrostatic precipitation devices , 1977 .

[10]  Gene Cooperman A unified efficiency theory for electrostatic precipitators , 1984 .

[11]  S. Patankar Numerical Heat Transfer and Fluid Flow , 2018, Lecture Notes in Mechanical Engineering.

[12]  Y. Cheng,et al.  Motion of particles in bends of circular pipes , 1981 .

[13]  N. Fuchs,et al.  On the stationary charge distribution on aerosol particles in a bipolar ionic atmosphere , 1963 .

[14]  Benjamin Y. H. Liu,et al.  Combined field and diffusion charging of aerosol particles in the continuum regime , 1978 .

[15]  K L Rubow,et al.  Electrostatic effects in aerosol sampling and filtration. , 1985, The Annals of occupational hygiene.

[16]  T. Yamamoto,et al.  Electrohydrodynamics in an electrostatic precipitator , 1981, Journal of Fluid Mechanics.

[17]  Markku Kilpeläinen,et al.  On the determination of electrostatic precipitator efficiency by differential mobility analyzer , 1992 .

[18]  P. Bricard L'Equlibre ionique De La basse atmosphere , 1949 .

[19]  J. Daily,et al.  A Study of Particle Charging for Electric Field Enhanced Deposition , 1992 .

[20]  M. Mitchner,et al.  An experimental study of the electrohydrodynamic flow in electrostatic precipitators , 1983, Journal of Fluid Mechanics.

[21]  K. Janka,et al.  Optimization of filtration efficiency and ozone production of the electrostatic precipitator , 1986 .

[22]  A. Filippov Charging of aerosol in the transition regime , 1993 .

[23]  Poul S. Larsen,et al.  Effect of secondary flows and turbulence on electrostatic precipitator efficiency , 1984 .

[24]  A. Mcfarland,et al.  Bipolar charging in the transition regime , 1986 .

[25]  Wallace B. Smith,et al.  Results of Field Measurements of Industrial Particulate Sources and Electrostatic Precipitator Performance. , 1975 .

[26]  A. Mcfarland,et al.  Continuum field-diffusion theory for bipolar charging of aerosols , 1983 .

[27]  M. Mitchner,et al.  Experimental study of the effect of turbulent diffusion on precipitator efficiency , 1982 .

[28]  P. Cooperman A new theory of precipitator efficiency , 1971 .

[29]  New model of electrostatic precipitation efficiency accounting for turbulent mixing , 1992 .

[30]  G. Kallio,et al.  Computation of electrical conditions inside wire‐duct electrostatic precipitators using a combined finite‐element, finite‐difference technique , 1986 .

[31]  M. Pauthenier,et al.  La charge des particules sphériques dans un champ ionisé , 1932 .

[32]  C. P. Yu,et al.  Deposition of charged particles from laminar flows in rectangular and cylindrical channels by image force , 1978 .

[33]  D. Pui,et al.  On the Combination Coefficient of Positive Ions with Ultrafine Neutral Particles in the Transition and Free-Molecule Regimes , 1992 .

[34]  M. Mitchner,et al.  Particle transport in electrostatic precipitators , 1980 .

[35]  M. Mitchner,et al.  Comparison of wire—plate and plate—plate electrostatic precipitators in turbulent flow , 1987 .

[36]  Walther Deutsch,et al.  Bewegung und Ladung der Elektrizitätsträger im Zylinderkondensator , 1922 .

[37]  G. A. Kallio,et al.  Interaction of electrostatic and fluid dynamic fields in wire—plate electrostatic precipitators , 1992, Journal of Fluid Mechanics.

[38]  L. M. Levin,et al.  Techniques for collection of representative aerosol samples , 1974 .