Normalization of fringe patterns using the bidimensional empirical mode decomposition and the Hilbert transform.

We evaluate a data-driven technique to perform bias suppression and modulation normalization of fringe patterns. The proposed technique uses a bidimensional empirical mode decomposition method to decompose a fringe pattern in a set of intrinsic frequency modes and the partial Hilbert transform to characterize the local amplitude of the modes in order to perform the normalization. The performance of the technique is tested using computer simulated fringe patterns of different fringe densities and illumination defects with high local variations of the modulation, and its advantages and limitations are discussed. Finally, the performance of the normalization approach in processing real data is also illustrated.

[1]  Christophe Damerval,et al.  A fast algorithm for bidimensional EMD , 2005, IEEE Signal Processing Letters.

[2]  Henry T. Y. Yang Finite Element Structural Analysis , 1985 .

[3]  Pablo D. Ruiz,et al.  Evaluation of a scale-space filter for speckle noise reduction in electronic speckle pattern interferometry , 1998 .

[4]  Cesar A. Sciammarella,et al.  Determination of strains from fringe patterns using space-frequency representations , 2003 .

[5]  Alejandro Federico,et al.  Phase retrieval in digital speckle pattern interferometry by application of two-dimensional active contours called snakes. , 2006, Applied optics.

[6]  P. Rastogi,et al.  Digital Speckle Pattern Interferometry & Related Techniques , 2000 .

[7]  Silong Peng,et al.  Boundary Processing of bidimensional EMD using texture synthesis , 2005, IEEE Signal Processing Letters.

[8]  N. Huang,et al.  The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[9]  Alejandro Federico,et al.  Local denoising of digital speckle pattern interferometry fringes by multiplicative correlation and weighted smoothing splines. , 2005, Applied optics.

[10]  G. H. Kaufmann Nondestructive testing with thermal waves using phase-shifted temporal speckle pattern interferometry , 2003 .

[11]  Wolfgang Osten,et al.  Improvement of the regularized phase tracking technique for the processing of nonnormalized fringe patterns. , 2002, Applied optics.

[12]  Alejandro Federico,et al.  Phase retrieval in digital speckle pattern interferometry by use of a smoothed space-frequency distribution. , 2003, Applied optics.

[13]  William H. Press,et al.  Numerical Recipes in C, 2nd Edition , 1992 .

[14]  A. Bovik,et al.  A universal image quality index , 2002, IEEE Signal Processing Letters.

[15]  L R Watkins,et al.  Determination of interferometer phase distributions by use of wavelets. , 1999, Optics letters.

[16]  William H. Press,et al.  Numerical recipes in C , 2002 .

[17]  Gabriel Rilling,et al.  On empirical mode decomposition and its algorithms , 2003 .

[18]  J A Quiroga,et al.  Adaptive monogenic filtering and normalization of ESPI fringe patterns. , 2005, Optics letters.

[19]  Alejandro Federico,et al.  Noise reduction in digital speckle pattern interferometry using bidimensional empirical mode decomposition. , 2008, Applied optics.

[20]  S. Hahn Hilbert Transforms in Signal Processing , 1996 .

[21]  Mingxia He,et al.  A simple boundary process technique for empirical mode decomposition , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[22]  Ying Huang,et al.  Image Zooming Method Using 2D EMD Technique , 2006, 2006 6th World Congress on Intelligent Control and Automation.

[23]  Juan Antonio Quiroga Mellado,et al.  Isotropic n-dimensional fringe pattern normalization , 2003 .

[24]  Noé Alcalá Ochoa,et al.  Normalization and noise-reduction algorithm for fringe patterns , 2007 .

[25]  Alejandro Federico,et al.  Denoising in digital speckle pattern interferometry using wave atoms. , 2007, Optics letters.

[26]  Juan Antonio Quiroga Mellado,et al.  Algorithm for fringe pattern normalization , 2001 .

[27]  A. Hall Applied Optics. , 2022, Science.

[28]  Bin Li,et al.  The Modified Bidimensional Empirical Mode Decomposition for Image Denoising , 2006, 2006 8th international Conference on Signal Processing.

[29]  D. Malacara,et al.  Interferogram Analysis for Optical Testing , 2018 .