Multiscale Empirical Interpolation for Solving Nonlinear PDEs using Generalized Multiscale Finite Element Methods

In this paper, we propose a multiscale empirical interpolation method for solving nonlinear multiscale partial differential equations. The proposed method combines empirical interpolation techniques and local multiscale methods, such as the Generalized Multiscale Finite Element Method (GMsFEM). To solve nonlinear equations, the GMsFEM is used to represent the solution on a coarse grid with multiscale basis functions computed offline. Computing the GMsFEM solution involves calculating the residuals on the fine grid. We use empirical interpolation concepts to evaluate the residuals and the Jacobians of the multiscale system with a computational cost which is proportional to the coarse scale problem rather than the fully-resolved fine scale one. Empirical interpolation methods use basis functions and an inexpensive inversion which are computed in the offline stage for finding the coefficients in the expansion based on a limited number of nonlinear function evaluations. The proposed multiscale empirical interpolation techniques: (1) divide computing the nonlinear function into coarse regions; (2) evaluate contributions of nonlinear functions in each coarse region taking advantage of a reduced-order representation of the solution; and (3) introduce multiscale proper-orthogonal-decomposition techniques to find appropriate interpolation vectors. We demonstrate the effectiveness of the proposed methods on several examples of nonlinear multiscale PDEs that are solved with Newton's methods and fully-implicit time marching schemes. Our numerical results show that the proposed methods provide a robust framework for solving nonlinear multiscale PDEs on a coarse grid with bounded error.

[1]  Danny C. Sorensen,et al.  Nonlinear Model Reduction via Discrete Empirical Interpolation , 2010, SIAM J. Sci. Comput..

[2]  Yalchin Efendiev,et al.  Multiscale finite element methods for high-contrast problems using local spectral basis functions , 2011, J. Comput. Phys..

[3]  H. Tchelepi,et al.  Multi-scale finite-volume method for elliptic problems in subsurface flow simulation , 2003 .

[4]  T. Hou,et al.  Multiscale Finite Element Methods for Nonlinear Problems and Their Applications , 2004 .

[5]  Yalchin Efendiev,et al.  Generalized Multiscale Finite Element Methods. Oversampling Strategies , 2013, 1304.4888.

[6]  N. Nguyen,et al.  An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .

[7]  Yalchin Efendiev,et al.  Generalized multiscale finite element method. Symmetric interior penalty coupling , 2013, J. Comput. Phys..

[8]  Ivan G. Graham,et al.  A new multiscale finite element method for high-contrast elliptic interface problems , 2010, Math. Comput..

[9]  M. Hinze,et al.  Proper Orthogonal Decomposition Surrogate Models for Nonlinear Dynamical Systems: Error Estimates and Suboptimal Control , 2005 .

[10]  Yalchin Efendiev,et al.  A Systematic Coarse-Scale Model Reduction Technique for Parameter-Dependent Flows in Highly Heterogeneous Media and Its Applications , 2012, Multiscale Model. Simul..

[11]  Bernard Haasdonk,et al.  Reduced Basis Approximation for Nonlinear Parametrized Evolution Equations based on Empirical Operator Interpolation , 2012, SIAM J. Sci. Comput..

[12]  Todd Arbogast,et al.  Analysis of a Two-Scale, Locally Conservative Subgrid Upscaling for Elliptic Problems , 2004, SIAM J. Numer. Anal..

[13]  Yalchin Efendiev,et al.  Generalized multiscale finite element methods (GMsFEM) , 2013, J. Comput. Phys..

[14]  Mary F. Wheeler,et al.  A multiscale mortar multipoint flux mixed finite element method , 2012 .

[15]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[16]  Todd Arbogast,et al.  A Multiscale Mortar Mixed Finite Element Method , 2007, Multiscale Model. Simul..

[17]  Y. Efendiev On Homogenization of Almost Periodic Nonlinear Parabolic Operators , 2007 .

[18]  Todd Arbogast,et al.  Subgrid Upscaling and Mixed Multiscale Finite Elements , 2006, SIAM J. Numer. Anal..

[19]  Yalchin Efendiev,et al.  Multiscale Finite Element Methods: Theory and Applications , 2009 .

[20]  Raytcho D. Lazarov,et al.  Variational Multiscale Finite Element Method for Flows in Highly Porous Media , 2011, Multiscale Model. Simul..

[21]  Yalchin Efendiev,et al.  Numerical Homogenization and Correctors for Nonlinear Elliptic Equations , 2004, SIAM J. Appl. Math..

[22]  Mehdi Ghommem,et al.  Mode decomposition methods for flows in high-contrast porous media. Global-local approach , 2013, J. Comput. Phys..

[23]  Yalchin Efendiev,et al.  Domain Decomposition Preconditioners for Multiscale Flows in High Contrast Media: Reduced Dimension Coarse Spaces , 2010, Multiscale Model. Simul..

[24]  Yalchin Efendiev,et al.  Domain Decomposition Preconditioners for Multiscale Flows in High Contrast Media: Reduced Dimension Coarse Spaces , 2010, Multiscale Model. Simul..

[25]  Jørg E. Aarnes,et al.  On the Use of a Mixed Multiscale Finite Element Method for GreaterFlexibility and Increased Speed or Improved Accuracy in Reservoir Simulation , 2004, Multiscale Model. Simul..