Multiscale Empirical Interpolation for Solving Nonlinear PDEs using Generalized Multiscale Finite Element Methods
暂无分享,去创建一个
[1] Danny C. Sorensen,et al. Nonlinear Model Reduction via Discrete Empirical Interpolation , 2010, SIAM J. Sci. Comput..
[2] Yalchin Efendiev,et al. Multiscale finite element methods for high-contrast problems using local spectral basis functions , 2011, J. Comput. Phys..
[3] H. Tchelepi,et al. Multi-scale finite-volume method for elliptic problems in subsurface flow simulation , 2003 .
[4] T. Hou,et al. Multiscale Finite Element Methods for Nonlinear Problems and Their Applications , 2004 .
[5] Yalchin Efendiev,et al. Generalized Multiscale Finite Element Methods. Oversampling Strategies , 2013, 1304.4888.
[6] N. Nguyen,et al. An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .
[7] Yalchin Efendiev,et al. Generalized multiscale finite element method. Symmetric interior penalty coupling , 2013, J. Comput. Phys..
[8] Ivan G. Graham,et al. A new multiscale finite element method for high-contrast elliptic interface problems , 2010, Math. Comput..
[9] M. Hinze,et al. Proper Orthogonal Decomposition Surrogate Models for Nonlinear Dynamical Systems: Error Estimates and Suboptimal Control , 2005 .
[10] Yalchin Efendiev,et al. A Systematic Coarse-Scale Model Reduction Technique for Parameter-Dependent Flows in Highly Heterogeneous Media and Its Applications , 2012, Multiscale Model. Simul..
[11] Bernard Haasdonk,et al. Reduced Basis Approximation for Nonlinear Parametrized Evolution Equations based on Empirical Operator Interpolation , 2012, SIAM J. Sci. Comput..
[12] Todd Arbogast,et al. Analysis of a Two-Scale, Locally Conservative Subgrid Upscaling for Elliptic Problems , 2004, SIAM J. Numer. Anal..
[13] Yalchin Efendiev,et al. Generalized multiscale finite element methods (GMsFEM) , 2013, J. Comput. Phys..
[14] Mary F. Wheeler,et al. A multiscale mortar multipoint flux mixed finite element method , 2012 .
[15] T. Hughes,et al. The variational multiscale method—a paradigm for computational mechanics , 1998 .
[16] Todd Arbogast,et al. A Multiscale Mortar Mixed Finite Element Method , 2007, Multiscale Model. Simul..
[17] Y. Efendiev. On Homogenization of Almost Periodic Nonlinear Parabolic Operators , 2007 .
[18] Todd Arbogast,et al. Subgrid Upscaling and Mixed Multiscale Finite Elements , 2006, SIAM J. Numer. Anal..
[19] Yalchin Efendiev,et al. Multiscale Finite Element Methods: Theory and Applications , 2009 .
[20] Raytcho D. Lazarov,et al. Variational Multiscale Finite Element Method for Flows in Highly Porous Media , 2011, Multiscale Model. Simul..
[21] Yalchin Efendiev,et al. Numerical Homogenization and Correctors for Nonlinear Elliptic Equations , 2004, SIAM J. Appl. Math..
[22] Mehdi Ghommem,et al. Mode decomposition methods for flows in high-contrast porous media. Global-local approach , 2013, J. Comput. Phys..
[23] Yalchin Efendiev,et al. Domain Decomposition Preconditioners for Multiscale Flows in High Contrast Media: Reduced Dimension Coarse Spaces , 2010, Multiscale Model. Simul..
[24] Yalchin Efendiev,et al. Domain Decomposition Preconditioners for Multiscale Flows in High Contrast Media: Reduced Dimension Coarse Spaces , 2010, Multiscale Model. Simul..
[25] Jørg E. Aarnes,et al. On the Use of a Mixed Multiscale Finite Element Method for GreaterFlexibility and Increased Speed or Improved Accuracy in Reservoir Simulation , 2004, Multiscale Model. Simul..