Log-domain decoding of LDPC codes over

This paper introduces a log-domain decoding scheme for LDPC codes over . While this scheme is mathematically equivalent to the conventional sum-product decoder, log-domain decoding has advantages in terms of implementation, computational complexity and numerical stability. Further, a suboptimal variant of the log-domain decoding algorithm is proposed, yielding a lower computational complexity. The proposed algorithms and the sum-product algorithm are compared both in terms of simulated BER performance and computational complexity.

[1]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[2]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[3]  D.J.C. MacKay,et al.  Good error-correcting codes based on very sparse matrices , 1997, Proceedings of IEEE International Symposium on Information Theory.

[4]  D. Mackay,et al.  Low density parity check codes over GF(q) , 1998, 1998 Information Theory Workshop (Cat. No.98EX131).

[5]  S. ten Brink,et al.  Iterative demapping and decoding for multilevel modulation , 1998, IEEE GLOBECOM 1998 (Cat. NO. 98CH36250).

[6]  Jens Berkmann On turbo decoding of nonbinary codes , 1998, IEEE Communications Letters.

[7]  Joachim Hagenauer,et al.  Decoding and Equalization with Analog Non-linear Networks , 1999, Eur. Trans. Telecommun..

[8]  David J. C. MacKay,et al.  Comparison of constructions of irregular Gallager codes , 1999, IEEE Trans. Commun..

[9]  Li Ping,et al.  Decoding low density parity check codes with finite quantization bits , 2000, IEEE Communications Letters.

[10]  Matthew C. Valenti An efficient software radio implementation of the UMTS turbo codec , 2001, 12th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications. PIMRC 2001. Proceedings (Cat. No.01TH8598).

[11]  Ajay Dholakia,et al.  Efficient implementations of the sum-product algorithm for decoding LDPC codes , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[12]  X. Jin Factor graphs and the Sum-Product Algorithm , 2002 .

[13]  Hongxin Song,et al.  Reduced-complexity decoding of Q-ary LDPC codes for magnetic recording , 2003 .

[14]  Henk Wymeersch,et al.  Computational complexity and quantization effects of decoding algorithms for non-binary LDPC codes , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[15]  Nikolaos Thomos,et al.  Design of Capacity-Approaching Low-Density Parity-Check Codes using Recurrent Neural Networks , 2020, ArXiv.