A sensitivity study of the Enceladus torus

[1] We have developed a homogeneous model of physical chemistry to investigate the neutral-dominated, water-based Enceladus torus. Electrons are treated as the summation of two isotropic Maxwellian distributions: a thermal component and a hot component. The effects of electron impact, electron recombination, charge exchange, and photochemistry are included. The mass source is neutral H2O, and a rigidly corotating magnetosphere introduces energy via pickup of freshly ionized neutrals. A small fraction of energy is also input by Coulomb collisions with a small population (<1%) of suprathermal electrons. Mass and energy are lost due to radial diffusion, escaping fast neutrals produced by charge exchange and recombination, and a small amount of radiative cooling. We explore a constrained parameter space spanned by water source rate, ion radial diffusion, hot electron temperature, and hot electron density. The key findings are as follows: (1) radial transport must take longer than 12 days; (2) water is input at a rate of 100–180 kg s−1; (3) hot electrons have energies between 100 and 250 eV; (4) neutrals dominate ions by a ratio of 40:1 and continue to dominate even when thermal electrons have temperatures as high as ≈5 eV; (5) hot electrons do not exceed 1% of the total electron population within the torus; (6) if hot electrons alone drive the observed longitudinal variation in thermal electron density, then they also drive a significant variation in ion composition.

[1]  F. Bagenal,et al.  Modeling the Enceladus plume–plasma interaction , 2009, 1001.0787.

[2]  Ralph L. McNutt,et al.  Plume ionosphere of Enceladus as seen by the Cassini ion and neutral mass spectrometer , 2009 .

[3]  Donald A. Gurnett,et al.  A diffusive equilibrium model for the plasma density in Saturn's magnetosphere , 2009 .

[4]  A. Farmer Saturn in hot water: Viscous evolution of the Enceladus torus , 2008, 0806.1523.

[5]  Robert L. Tokar,et al.  Cassini plasma spectrometer thermal ion measurements in Saturn's inner magnetosphere , 2008 .

[6]  F. Bagenal,et al.  A multispecies chemistry model of Io's local interaction with the Plasma Torus , 2008 .

[7]  I. Dandouras,et al.  Multi-instrument analysis of electron populations in Saturn's magnetosphere , 2008 .

[8]  Robert L. Tokar,et al.  Cassini detection of water‐group pick‐up ions in the Enceladus torus , 2008 .

[9]  N. André,et al.  Derivation of density and temperature from the Cassini–Huygens CAPS electron spectrometer , 2008 .

[10]  F. Bagenal,et al.  Longitudinal plasma density variations at Saturn caused by hot electrons , 2008 .

[11]  F. Bagenal,et al.  Cassini UVIS observations of the Io plasma torus. IV. Modeling temporal and azimuthal variability , 2007, 0705.4480.

[12]  B. Mauk,et al.  Electron circulation in Saturn's magnetosphere , 2008 .

[13]  M. Dougherty,et al.  Ion and neutral sources and sinks within Saturn's inner magnetosphere: Cassini results , 2008 .

[14]  M. Dougherty,et al.  Erratum to “Cassini observations of Saturn's inner plasmasphere: Saturn orbit insertion results”: [Planetary and Space Science 54 (2006) 1197–1210] , 2007 .

[15]  Robert E. Johnson,et al.  Understanding the escape of water from Enceladus , 2007 .

[16]  F. Bagenal,et al.  Saturn's neutral torus versus Jupiter's plasma torus , 2007 .

[17]  M. Dougherty,et al.  The Variable Rotation Period of the Inner Region of Saturn's Plasma Disk , 2007, Science.

[18]  Michelle F. Thomsen,et al.  Cassini observations of Saturn's inner plasmasphere: Saturn orbit insertion results , 2006 .

[19]  C. Hansen,et al.  Enceladus' Water Vapor Plume , 2006, Science.

[20]  R E Johnson,et al.  The Interaction of the Atmosphere of Enceladus with Saturn's Plasma , 2006, Science.

[21]  C. Russell,et al.  Discovery of a Dynamic Atmosphere at Enceladus from Cassini Magnetometer Observations , 2006 .

[22]  A. Steffl,et al.  Cassini UVIS Observations of the Io Plasma Torus. III. Observations of Temporal and Azimuthal Variability , 2005, astro-ph/0508055.

[23]  Donald A. Gurnett,et al.  Equatorial electron density measurements in Saturn's inner magnetosphere , 2005 .

[24]  M. Moncuquet,et al.  Quasi thermal noise spectroscopy in the inner magnetosphere of Saturn with Cassini/RPWS: Electron temperatures and density , 2005 .

[25]  J. Richardson,et al.  A self‐consistent model of plasma and neutrals at Saturn: Neutral cloud morphology , 2005 .

[26]  P. Louarn,et al.  Radio and Plasma Wave Observations at Saturn from Cassini's Approach and First Orbit , 2005, Science.

[27]  R E Johnson,et al.  Composition and Dynamics of Plasma in Saturn's Magnetosphere , 2005, Science.

[28]  H. Keller,et al.  Ultraviolet Imaging Spectroscopy Shows an Active Saturnian System , 2005, Science.

[29]  M. Dougherty,et al.  Preliminary results on Saturn's inner plasmasphere as observed by Cassini: Comparison with Voyager , 2004 .

[30]  M. L. Kaiser,et al.  The Cassini Radio and Plasma Wave Investigation , 2004 .

[31]  A. Steffl,et al.  Cassini UVIS observations of the Io plasma torus. I. Initial results , 2004, 1301.3818.

[32]  A. Steffl,et al.  Cassini UVIS observations of the Io plasma torus. II. Radial variations , 2004, 1301.3813.

[33]  T. Hill,et al.  The Io neutral clouds and plasma torus , 2004 .

[34]  Peter A. Delamere,et al.  Modeling Variability of Plasma Conditions in the Io Torus , 2003 .

[35]  J. Richardson,et al.  Saturn: Search for a missing water source , 2002 .

[36]  N. Thomas,et al.  Detection of S (IV) 10.51 μm emission from the Io plasma torus , 2001 .

[37]  Eos Sorce,et al.  Laboratory for Atmospheric and Space Physics , 2000 .

[38]  A. Eviatar,et al.  A two‐dimensional model of plasma transport and chemistry in the Jovian magnetosphere , 1998 .

[39]  J. Richardson,et al.  OH in Saturn's magnetosphere: Observations and implications , 1998 .

[40]  D. D. Barbosa Neutral cloud theory of the Jovian nebula: Anomalous ionization effect of superthermal electrons , 1994 .

[41]  D. Shemansky,et al.  Detection of the hydroxyl radical in the Saturn magnetosphere , 1993, Nature.

[42]  John D. Richardson,et al.  A plasma density model for Saturn based on Voyager observations , 1990 .

[43]  D. Shemansky Energy branching in the Io plasma torus: The failure of neutral cloud theory , 1988 .

[44]  J. Richardson,et al.  Satellite tori at Saturn , 1986 .

[45]  R. S. Wolff,et al.  Plasma Observations Near Uranus: Initial Results from Voyager 2 , 1979, Science.

[46]  F. Coroniti,et al.  Coulomb thermal properties and stability of the Io plasma torus , 1983 .

[47]  J. Scudder,et al.  Survey of low‐energy plasma electrons in Saturn's magnetosphere: Voyagers 1 and 2 , 1983 .

[48]  P. Gazis,et al.  Plasma Observations Near Saturn: Initial Results from Voyager 2 , 1982, Science.

[49]  J. D. Sullivan,et al.  Plasma observations near saturn: initial results from voyager 1. , 1981, Science.

[50]  J. Mihalov,et al.  Plasmas in Saturn's magnetosphere , 1980 .

[51]  A. W. Schardt,et al.  Observations of Energetic Ions and Electrons in Saturn's Magnetosphere , 1980, Science.

[52]  J. Mihalov,et al.  Preliminary Results on the Plasma Environment of Saturn from the Pioneer 11 Plasma Analyzer Experiment , 1980, Science.

[53]  J. D. Sullivan,et al.  Spatial distribution of plasma in the Io Torus , 1980 .