On Monomial Characters and Central Idempotents of Rational Group Algebras
暂无分享,去创建一个
[1] Donald Passman,et al. Infinite Crossed Products , 1989 .
[2] Ángel del Río,et al. An algorithm to compute the primitive central idempotents and the Wedderburn decomposition of a rational group algebra , 2003, J. Symb. Comput..
[3] Allen Herman. On the automorphism groups of rational group algebras of metacyclic groups , 1997 .
[4] Jürgen Ritter,et al. Construction of units in integral group rings of finite nilpotent groups , 1991 .
[5] S. Sehgal,et al. Large Groups of Units of Integral Group Rings of Finite Nilpotent Groups , 1993 .
[6] Gordon L. Walker,et al. Abelian group algebras of finite order , 1950 .
[7] Eric Jespers,et al. CENTRAL IDEMPOTENTS IN THE RATIONAL GROUP ALGEBRA OF A FINITE NILPOTENT GROUP , 2003 .
[8] Ángel del Río,et al. A structure theorem for the unit group of the integral group ring of some finite groups , 2000 .
[9] Manuel Ruiz,et al. COMPUTING LARGE DIRECT PRODUCTS OF FREE GROUPS IN INTEGRAL GROUP RINGS , 2002 .
[10] R. James Milgram,et al. The Schur Subgroup of the Brauer Group , 1994 .
[11] E. Jespers,et al. Units of Integral Group Rings of Some Metacyclic Groups , 1994, Canadian Mathematical Bulletin.
[12] E. G. Goodaire. Alternative loop rings , 2022, Publicationes Mathematicae Debrecen.
[13] Kenjiro Shoda. Uber die monomialen Darstellungen einer endlichen Gruppe , 1933 .
[14] E. Schenkman,et al. Group Theory , 1965 .
[15] C. Ayoub,et al. On the group ring of a finite abelian group , 1969, Bulletin of the Australian Mathematical Society.
[16] C. Curtis,et al. Representation theory of finite groups and associated algebras , 1962 .
[17] Eric Jespers,et al. Generators of large subgroups of the unit group of integral group rings , 1993 .