Imaging and image processing in porous media research

Three-dimensional imaging and image processing has become an important part for investigations of fluid distribution and flow in porous media. We describe two methods of computed tomography with different characteristics, namely X-ray- and neutron-based. We give an overview of image processing sequences and their methods. We investigated image enhancement with a focus on filters using partial differential equations, classification and structure identification that we used to prepare our images for quantitative evaluations. These methods are demonstrated on a partially saturated sand sample. Finally, we show an application with soil aggregates where investigations using synchrotron X-rays and thermal neutrons have led to new insights and refined fluid distribution and flow models.

[1]  H. Flühler,et al.  Infiltration through series of soil aggregates: Neutron radiography and modeling , 2007 .

[2]  Veerle Cnudde,et al.  The use of neutrons and monochromatic X-rays for non-destructive testing in geological materials , 2004 .

[3]  Bernd Jähne,et al.  BOOK REVIEW: Digital Image Processing, 5th revised and extended edition , 2002 .

[4]  Pierre Soille,et al.  Morphological Image Analysis , 1999 .

[5]  Carsten Raven,et al.  Numerical removal of ring artifacts in microtomography , 1998 .

[6]  Pierre Boillat,et al.  The micro-setup for neutron imaging: A major step forward to improve the spatial resolution , 2007 .

[7]  S. Osher,et al.  Nonlinear inverse scale space methods , 2006 .

[8]  Hans-Jörg Vogel,et al.  Quantification of pore structure and gas diffusion as a function of scale , 2002 .

[9]  Veerle Cnudde,et al.  High-speed neutron tomography of dynamic processes , 2005 .

[10]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[11]  L. Rudin,et al.  Feature-oriented image enhancement using shock filters , 1990 .

[12]  Alexis Gourdon,et al.  Computing the Differential Characteristics of Isointensity Surfaces , 1995, Comput. Vis. Image Underst..

[13]  O. Duliu Computer axial tomography in geosciences: an overview , 1999 .

[14]  IEEE TRANSACTIONS ON CORE VLSI IEEE TRANSACTIONS ON IMAGE PROCESSING IEEE TRANSACTIONS ON DIGITAL SYSTEM DESIGN IEEE TRANSACTIONS ON TESTING IEEE TRANSACTIONS ON COMMUNICATION IEEE TRANSACTIONS ON LOW POWER VLSI , 2010 .

[15]  Richard A. Ketcham,et al.  Computational methods for quantitative analysis of three-dimensional features in geological specimens , 2005 .

[16]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[17]  Azriel Rosenfeld,et al.  Segmentation and Estimation of Image Region Properties through Cooperative Hierarchial Computation , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[18]  L. Álvarez,et al.  Signal and image restoration using shock filters and anisotropic diffusion , 1994 .

[19]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Steven Kay,et al.  Fundamentals Of Statistical Signal Processing , 2001 .

[21]  Hans-Jörg Vogel,et al.  Topological characterization of pore space in soil — sample preparation and digital image-processing , 1996 .

[22]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[23]  Andrew K. C. Wong,et al.  A new method for gray-level picture thresholding using the entropy of the histogram , 1985, Comput. Vis. Graph. Image Process..

[24]  D. Wildenschild,et al.  Quantitative Analysis of Flow Processes in a Sand Using Synchrotron‐Based X‐ray Microtomography , 2005, Vadose Zone Journal.

[25]  R. Al-Raoush,et al.  A pore-scale investigation of a multiphase porous media system. , 2005, Journal of contaminant hydrology.

[26]  A. Carminati,et al.  Investigation of water imbibition in porous stone by thermal neutron radiography , 2006 .

[27]  Henry Lin,et al.  A comparison of fractal analytical methods on 2- and 3-dimensional computed tomographic scans of soil aggregates , 2006 .

[28]  S. Bryant,et al.  A level set method for determining critical curvatures for drainage and imbibition. , 2006, Journal of colloid and interface science.

[29]  Water Absorption into Construction Materials: Comparison of Neutron Radiography Data with Network Absorption Models , 2006 .

[30]  Francisco Sandoval Hernández,et al.  Pyramid segmentation algorithms revisited , 2006, Pattern Recognit..

[31]  Avinash C. Kak,et al.  Principles of computerized tomographic imaging , 2001, Classics in applied mathematics.

[32]  W. Brent Lindquist,et al.  Image Thresholding by Indicator Kriging , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Guillermo Sapiro,et al.  Robust anisotropic diffusion , 1998, IEEE Trans. Image Process..

[34]  Adrian Sheppard,et al.  Techniques for image enhancement and segmentation of tomographic images of porous materials , 2004 .

[35]  Keith W. Jones,et al.  Synchrotron computed microtomography of porous media: Topology and transports. , 1994, Physical review letters.

[36]  Gioacchino Viggiani,et al.  X-ray microtomography for studying localized deformation in fine-grained geomaterials under triaxial compression , 2004 .

[37]  Tammo S. Steenhuis,et al.  Measurement of fluid contents and wetting front profiles by real-time neutron radiography , 2004 .

[38]  Jan Sijbers,et al.  Reduction of ring artefacts in high resolution micro-CT reconstructions. , 2004, Physics in medicine and biology.

[39]  F. Peterka,et al.  Description of transport of liquid in porous media : a study based on neutron radiography data , 1990 .

[40]  Joachim Weickert,et al.  Theoretical foundations for spatially discrete 1-D shock filtering , 2007, Image Vis. Comput..

[41]  Otmar Scherzer,et al.  Inverse Scale Space Theory for Inverse Problems , 2001, Scale-Space.

[42]  Marco Stampanoni,et al.  High resolution X-ray detector for synchrotron-based microtomography , 2002 .

[43]  Paul L. Rosin Unimodal thresholding , 2001, Pattern Recognit..

[44]  L. Feldkamp,et al.  Practical cone-beam algorithm , 1984 .

[45]  M. Císlerová,et al.  CT derived porosity distribution and flow domains , 2002 .

[46]  Chris Moran,et al.  3D reconstruction and quantification of macropores using X-ray computed tomography and image analysis , 2002 .

[47]  C. Ritsema,et al.  Three-dimensional visualization of preferential flow patterns in two soils , 1996 .

[48]  Mark R. Lankton,et al.  Assessment of localized deformations in sand using X-ray computed tomography , 2000 .

[49]  Christoph H. Arns,et al.  Three-dimensional imaging of multiphase flow in porous media , 2004 .

[50]  A. R. Videla,et al.  Watershed Functions Applied to a 3D Image Segmentation Problem for the Analysis of Packed Particle Beds , 2006 .

[51]  A. Czachor,et al.  Dynamic neutron radiography observations of water migration in porous media , 2005 .

[52]  Mark L. Rivers,et al.  Using X-ray computed tomography in hydrology: systems, resolutions, and limitations , 2002 .

[53]  P. Lions,et al.  Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .

[54]  Anders Kaestner,et al.  Visualizing three-dimensional root networks using computed tomography , 2006 .

[55]  Rolf Adams,et al.  Seeded Region Growing , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[56]  Gjlles Aubert,et al.  Mathematical problems in image processing , 2001 .

[57]  J. Milczarek,et al.  Neutron radiography study of water absorption in porous building materials: anomalous diffusion analysis , 2004 .

[58]  Manfred Krafczyk,et al.  Tomographical Imaging and Mathematical Description of Porous Media Used for the Prediction of Fluid Distribution , 2006 .

[59]  Jan M. Nordbotten,et al.  Inverse Scale Spaces for Nonlinear Regularization , 2006, Journal of Mathematical Imaging and Vision.

[60]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.

[61]  S. Osher,et al.  Geometric Level Set Methods in Imaging, Vision, and Graphics , 2011, Springer New York.

[62]  Jianping Fan,et al.  Seeded region growing: an extensive and comparative study , 2005, Pattern Recognit. Lett..

[63]  A. Yamaji,et al.  Analysis of clustering in three-dimensional grain fabric , 2007 .

[64]  J. Craggs Applied Mathematical Sciences , 1973 .