Beyond Read-Counts: Ribo-seq Data Analysis to Understand the Functions of the Transcriptome.

[1]  S. Mirarab,et al.  Sequence Analysis , 2020, Encyclopedia of Bioinformatics and Computational Biology.

[2]  Nicholas T. Ingolia,et al.  The Growing Toolbox for Protein Synthesis Studies. , 2017, Trends in biochemical sciences.

[3]  Hector H. Huang,et al.  Time-Resolved Proteomics Extends Ribosome Profiling-Based Measurements of Protein Synthesis Dynamics. , 2017, Cell systems.

[4]  Howard Y. Chang,et al.  The Mammalian Ribo-interactome Reveals Ribosome Functional Diversity and Heterogeneity , 2017, Cell.

[5]  B. Blencowe The Relationship between Alternative Splicing and Proteomic Complexity. , 2017, Trends in biochemical sciences.

[6]  Weili Wang,et al.  Riborex: fast and flexible identification of differential translation from Ribo‐seq data , 2017, Bioinform..

[7]  Lennart Martens,et al.  A Golden Age for Working with Public Proteomics Data , 2017, Trends in biochemical sciences.

[8]  P. Willems,et al.  N-terminal Proteomics Assisted Profiling of the Unexplored Translation Initiation Landscape in Arabidopsis thaliana , 2017, Molecular & Cellular Proteomics.

[9]  Eivind Valen,et al.  REPARATION: ribosome profiling assisted (re-)annotation of bacterial genomes , 2017, bioRxiv.

[10]  M. Tress,et al.  Alternative Splicing May Not Be the Key to Proteome Complexity. , 2017, Trends in biochemical sciences.

[11]  Tao Jiang,et al.  TITER: predicting translation initiation sites by deep learning , 2017, bioRxiv.

[12]  C. Dieterich,et al.  Bayesian prediction of RNA translation from ribosome profiling , 2017, Nucleic acids research.

[13]  Eun Ji Kim,et al.  Simulation-based comprehensive benchmarking of RNA-seq aligners , 2016, Nature Methods.

[14]  Patrick B. F. O'Connor,et al.  Insights into the mechanisms of eukaryotic translation gained with ribosome profiling , 2016, Nucleic acids research.

[15]  Jonathan S. Weissman,et al.  Plastid: nucleotide-resolution analysis of next-generation sequencing and genomics data , 2016, BMC Genomics.

[16]  M. Pelizzola,et al.  Integrative classification of human coding and noncoding genes through RNA metabolism profiles , 2016, Nature Structural &Molecular Biology.

[17]  Robert J. Weatheritt,et al.  The ribosome-engaged landscape of alternative splicing , 2016, Nature Structural &Molecular Biology.

[18]  P. Hsu,et al.  Super-resolution ribosome profiling reveals unannotated translation events in Arabidopsis , 2016, Proceedings of the National Academy of Sciences.

[19]  Vadim N. Gladyshev,et al.  Ribonuclease selection for ribosome profiling , 2016, Nucleic acids research.

[20]  Jianyang Zeng,et al.  ROSE: a deep learning based framework for predicting ribosome stalling , 2016, bioRxiv.

[21]  S. Thoms,et al.  Functional Translational Readthrough: A Systems Biology Perspective , 2016, PLoS genetics.

[22]  T. Preiss,et al.  Dynamics of ribosome scanning and recycling revealed by translation complex profiling , 2016, Nature.

[23]  Alice Barkan,et al.  Dynamics of Chloroplast Translation during Chloroplast Differentiation in Maize , 2016, PLoS genetics.

[24]  Pascal Barbry,et al.  RiboProfiling: a Bioconductor package for standard Ribo-seq pipeline processing , 2016, F1000Research.

[25]  Matthias Selbach,et al.  Systematic Errors in Peptide and Protein Identification and Quantification by Modified Peptides* , 2016, Molecular & Cellular Proteomics.

[26]  L. S. Churchman,et al.  Synchronized translation programs across compartments during mitochondrial biogenesis , 2016, Nature.

[27]  Tamir Tuller,et al.  Estimation of ribosome profiling performance and reproducibility at various levels of resolution , 2016, Biology Direct.

[28]  Yoosik Kim,et al.  Regulation of Poly(A) Tail and Translation during the Somatic Cell Cycle. , 2016, Molecular cell.

[29]  R. Aebersold,et al.  On the Dependency of Cellular Protein Levels on mRNA Abundance , 2016, Cell.

[30]  Xuerui Yang,et al.  Genome-wide assessment of differential translations with ribosome profiling data , 2016, Nature Communications.

[31]  Antonio J Giraldez,et al.  Upstream ORFs are prevalent translational repressors in vertebrates , 2016, The EMBO journal.

[32]  T. Tuller,et al.  Complementary Post Transcriptional Regulatory Information is Detected by PUNCH-P and Ribosome Profiling , 2016, Scientific Reports.

[33]  Melissa J. Moore,et al.  Redefining the Translational Status of 80S Monosomes , 2016, Cell.

[34]  Rachel Green,et al.  Clarifying the Translational Pausing Landscape in Bacteria by Ribosome Profiling. , 2016, Cell reports.

[35]  K. Gevaert,et al.  Positional proteomics reveals differences in N‐terminal proteoform stability , 2016, Molecular systems biology.

[36]  Audrey M. Michel,et al.  RiboGalaxy: A browser based platform for the alignment, analysis and visualization of ribosome profiling data , 2016, RNA biology.

[37]  R. Zinzen,et al.  Putting chromatin in its place: the pioneer factor NeuroD1 modulates chromatin state to drive cell fate decisions , 2016, The EMBO journal.

[38]  Vivien Marx,et al.  The Author File: Hasan DeMirci , 2015, Nature Methods.

[39]  J. Doudna,et al.  Tunable protein synthesis by transcript isoforms in human cells , 2015, bioRxiv.

[40]  Sang Y. Chun,et al.  SPECtre: a spectral coherence-based classifier of actively translated transcripts from ribosome profiling sequence data , 2015, BMC Bioinformatics.

[41]  Uwe Ohler,et al.  Detecting actively translated open reading frames in ribosome profiling data , 2015, Nature Methods.

[42]  Kevin Struhl,et al.  Transcriptome-scale RNase-footprinting of RNA-protein complexes , 2015, Nature Biotechnology.

[43]  Aviv Regev,et al.  A Regression-Based Analysis of Ribosome-Profiling Data Reveals a Conserved Complexity to Mammalian Translation. , 2015, Molecular cell.

[44]  Yang I. Li,et al.  Thousands of novel translated open reading frames in humans inferred by ribosome footprint profiling , 2015, bioRxiv.

[45]  A. Regev,et al.  Many lncRNAs, 5’UTRs, and pseudogenes are translated and some are likely to express functional proteins , 2015, eLife.

[46]  Lennart Martens,et al.  sORFs.org: a repository of small ORFs identified by ribosome profiling , 2015, Nucleic Acids Res..

[47]  Yan Wang,et al.  RPFdb: a database for genome wide information of translated mRNA generated from ribosome profiling , 2015, Nucleic Acids Res..

[48]  Thomas J. Hardcastle,et al.  The use of duplex-specific nuclease in ribosome profiling and a user-friendly software package for Ribo-seq data analysis , 2015, RNA.

[49]  Jeffrey A. Hussmann,et al.  Understanding Biases in Ribosome Profiling Experiments Reveals Signatures of Translation Dynamics in Yeast , 2015, bioRxiv.

[50]  T. Jensen,et al.  Nonsense-mediated mRNA decay: an intricate machinery that shapes transcriptomes , 2015, Nature Reviews Molecular Cell Biology.

[51]  Sebastian D. Mackowiak,et al.  Extensive identification and analysis of conserved small ORFs in animals , 2015, Genome Biology.

[52]  Rachel Legendre,et al.  RiboTools: a Galaxy toolbox for qualitative ribosome profiling analysis , 2015, Bioinform..

[53]  Sebastian A. Leidel,et al.  Optimization of Codon Translation Rates via tRNA Modifications Maintains Proteome Integrity , 2015, Cell.

[54]  Martin Vingron,et al.  Translational regulation shapes the molecular landscape of complex disease phenotypes , 2015, Nature Communications.

[55]  Pavel V. Baranov,et al.  Comparative survey of the relative impact of mRNA features on local ribosome profiling read density , 2015, Nature Communications.

[56]  J. Goeman,et al.  Assessing the translational landscape of myogenic differentiation by ribosome profiling , 2015, Nucleic acids research.

[57]  Gunnar Rätsch,et al.  RiboDiff: detecting changes of mRNA translation efficiency from ribosome footprints , 2015, bioRxiv.

[58]  Gunnar Rätsch,et al.  MMR: a tool for read multi-mapper resolution , 2015, bioRxiv.

[59]  Patrick B. F. O'Connor,et al.  Translation of 5′ leaders is pervasive in genes resistant to eIF2 repression , 2015, eLife.

[60]  Eystein Oveland,et al.  PeptideShaker enables reanalysis of MS-derived proteomics data sets , 2015, Nature Biotechnology.

[61]  Teemu P. Miettinen,et al.  Modified ribosome profiling reveals high abundance of ribosome protected mRNA fragments derived from 3′ untranslated regions , 2014, Nucleic acids research.

[62]  W. Van Criekinge,et al.  PROTEOFORMER: deep proteome coverage through ribosome profiling and MS integration , 2014, Nucleic acids research.

[63]  Shu-Bing Qian,et al.  Quantitative profiling of initiating ribosomes in vivo , 2014, Nature Methods.

[64]  Sarah E. Jackson,et al.  Ribosome profiling reveals pervasive translation outside of annotated protein-coding genes. , 2014, Cell reports.

[65]  Vadim N. Gladyshev,et al.  Translation inhibitors cause abnormalities in ribosome profiling experiments , 2014, Nucleic acids research.

[66]  Wenqian Hu,et al.  Translation of small open reading frames within unannotated RNA transcripts in Saccharomyces cerevisiae. , 2014, Cell reports.

[67]  J. Mata,et al.  The translational landscape of fission yeast meiosis and sporulation , 2014, Nature Structural &Molecular Biology.

[68]  M. Albà,et al.  Long non-coding RNAs as a source of new peptides , 2014, eLife.

[69]  Nikolaus Rajewsky,et al.  Identification of small ORFs in vertebrates using ribosome footprinting and evolutionary conservation , 2014, The EMBO journal.

[70]  P. Brown,et al.  Distinct stages of the translation elongation cycle revealed by sequencing ribosome-protected mRNA fragments , 2014, eLife.

[71]  David H Burkhardt,et al.  Quantifying Absolute Protein Synthesis Rates Reveals Principles Underlying Allocation of Cellular Resources , 2014, Cell.

[72]  Peng Sun,et al.  Bi-Force: large-scale bicluster editing and its application to gene expression data biclustering , 2014, Nucleic acids research.

[73]  Tamar Geiger,et al.  Genome-wide identification and quantification of protein synthesis in cultured cells and whole tissues by puromycin-associated nascent chain proteomics (PUNCH-P) , 2014, Nature Protocols.

[74]  Reuven Agami,et al.  Ribosome profiling reveals features of normal and disease-associated mitochondrial translation , 2013, Nature Communications.

[75]  Joshua G. Dunn,et al.  Ribosome profiling reveals pervasive and regulated stop codon readthrough in Drosophila melanogaster , 2013, eLife.

[76]  Richard A. Olshen,et al.  Assessing gene-level translational control from ribosome profiling , 2013, Bioinform..

[77]  Sol Katzman,et al.  Frac-seq reveals isoform-specific recruitment to polyribosomes , 2013, Genome research.

[78]  J. Rinn,et al.  Ribosome profiling reveals resemblance between long non-coding RNAs and 5′ leaders of coding RNAs , 2013, Development.

[79]  Nicholas T. Ingolia,et al.  Ribosome Profiling Provides Evidence that Large Noncoding RNAs Do Not Encode Proteins , 2013, Cell.

[80]  Desmond G. Higgins,et al.  GWIPS-viz: development of a ribo-seq genome browser , 2013, Nucleic Acids Res..

[81]  Audrey M. Michel,et al.  Observation of dually decoded regions of the human genome using ribosome profiling data , 2012, Genome research.

[82]  R. Guigó,et al.  Modelling and simulating generic RNA-Seq experiments with the flux simulator , 2012, Nucleic acids research.

[83]  B. Shen,et al.  Global mapping of translation initiation sites in mammalian cells at single-nucleotide resolution , 2012, Proceedings of the National Academy of Sciences.

[84]  Anna M. McGeachy,et al.  The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments , 2012, Nature Protocols.

[85]  A. Giraldez,et al.  Ribosome Profiling Shows That miR-430 Reduces Translation Before Causing mRNA Decay in Zebrafish , 2012, Science.

[86]  S. Linnarsson,et al.  Counting absolute numbers of molecules using unique molecular identifiers , 2011, Nature Methods.

[87]  Nicholas T. Ingolia,et al.  Ribosome Profiling of Mouse Embryonic Stem Cells Reveals the Complexity and Dynamics of Mammalian Proteomes , 2011, Cell.

[88]  Colin N. Dewey,et al.  RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome , 2011, BMC Bioinformatics.

[89]  Robert J. Chalkley,et al.  The Effect of Using an Inappropriate Protein Database for Proteomic Data Analysis , 2011, PloS one.

[90]  Robert Nadon,et al.  Anota: Analysis of Differential Translation in Genome-wide Studies , 2011, Bioinform..

[91]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[92]  M. Selbach,et al.  Global quantification of mammalian gene expression control , 2011, Nature.

[93]  N. Friedman,et al.  Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells , 2011, Nature Biotechnology.

[94]  J. Weissman,et al.  Nascent transcript sequencing visualizes transcription at nucleotide resolution , 2011, Nature.

[95]  R. Nadon,et al.  Identification of differential translation in genome wide studies , 2010, Proceedings of the National Academy of Sciences.

[96]  S. Le,et al.  Sequence signatures and mRNA concentration can explain two-thirds of protein abundance variation in a human cell line , 2010, Molecular systems biology.

[97]  S. Salzberg,et al.  NIH Public Access Author Manuscript , 2006 .

[98]  Nicholas T. Ingolia,et al.  Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling , 2009, Science.

[99]  B. Williams,et al.  Mapping and quantifying mammalian transcriptomes by RNA-Seq , 2008, Nature Methods.

[100]  Y. Hayashizaki,et al.  Deep cap analysis gene expression (CAGE): genome-wide identification of promoters, quantification of their expression, and network inference. , 2008, BioTechniques.

[101]  John N. Hutchinson,et al.  A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains , 2007, BMC Genomics.

[102]  John D. Storey,et al.  Genome-wide analysis of mRNA translation profiles in Saccharomyces cerevisiae , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[103]  Ed Zintel,et al.  Resources , 1998, IT Prof..

[104]  D. Thomson,et al.  Spectrum estimation and harmonic analysis , 1982, Proceedings of the IEEE.

[105]  Alexander Bartholomäus,et al.  Mapping the non-standardized biases of ribosome profiling , 2016, Biological chemistry.

[106]  Yunzhi Fei,et al.  Trade hub to innovation hotbed: The southern Chinese city of Guangzhou is fast becoming an epicentre for scientists and researchers to join forces with industry to develop new high-tech products and innovations. , 2016 .

[107]  T. Kirkwood,et al.  Detecting translational regulation by change point analysis of ribosome profiling data sets , 2014 .

[108]  M. Selbach,et al.  Global analysis of cellular protein translation by pulsed SILAC , 2009, Proteomics.