Concepts for nanoscale resolution in fluorescence microscopy

Spatio-temporal visualization of cellular structures by fluorescence microscopy has become indispensable in biology. However, the resolution of conventional fluorescence microscopy is limited by diffraction to about 180 nm in the focal plane and to about 500 nm along the optic axis. Recently, concepts have emerged that overcome the diffraction resolution barrier fundamentally. Formed on the basis of reversible saturable optical transitions, these concepts might eventually allow us to investigate hitherto inaccessible details within live cells.

[1]  Stefan W. Hell,et al.  Focal spots of size λ/23 open up far-field florescence microscopy at 33 nm axial resolution , 2003 .

[2]  S. Hell,et al.  Ground-state-depletion fluorscence microscopy: A concept for breaking the diffraction resolution limit , 1995 .

[3]  Robert J. Chichester,et al.  Single Molecules Observed by Near-Field Scanning Optical Microscopy , 1993, Science.

[4]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[5]  E. A. Schwartz,et al.  Continuous and Transient Vesicle Cycling at a Ribbon Synapse , 1998, The Journal of Neuroscience.

[6]  S W Hell,et al.  Far‐field fluorescence microscopy with three‐dimensional resolution in the 100‐nm range , 1997, Journal of microscopy.

[7]  Stefan W. Hell,et al.  Lateral resolution of 28 nm (λ /25) in far-field fluorescence microscopy , 2003 .

[8]  S. Hell,et al.  Focal spots of size lambda/23 open up far-field fluorescence microscopy at 33 nm axial resolution. , 2002, Physical review letters.

[9]  P. So,et al.  Lateral resolution enhancement with standing evanescent waves. , 2000, Optics letters.

[10]  Mario Bertero,et al.  Resolution in diffraction-limited imaging, a singular value analysis: IV. The case of uncertain localization or non-uniform illumination of the object , 1984 .

[11]  Stefan W. Hell,et al.  Strategy for far-field optical imaging and writing without diffraction limit , 2004 .

[12]  J. Lippincott-Schwartz,et al.  Development and Use of Fluorescent Protein Markers in Living Cells , 2003, Science.

[13]  Agard,et al.  I5M: 3D widefield light microscopy with better than 100 nm axial resolution , 1999, Journal of microscopy.

[14]  Stefan W. Hell,et al.  Laser-diode-stimulated emission depletion microscopy , 2003 .

[15]  E. Wolf,et al.  Principles of Optics (7th Ed) , 1999 .

[16]  S W Hell,et al.  Coherent use of opposing lenses for axial resolution increase in fluorescence microscopy. I. Comparative study of concepts. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[17]  S. Hell,et al.  Properties of a 4Pi confocal fluorescence microscope , 1992 .

[18]  S. Hell Toward fluorescence nanoscopy , 2003, Nature Biotechnology.

[19]  C. C. Wang,et al.  Nonlinear optics. , 1966, Applied optics.

[20]  R. Heintzmann,et al.  Saturated patterned excitation microscopy--a concept for optical resolution improvement. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[21]  Stefan W. Hell,et al.  Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation , 1992 .

[22]  Pekka Hänninen,et al.  Two-photon excitation 4Pi confocal microscope: enhanced axial resolution microscope for biological research , 1995 .

[23]  Daniel L. Farkas,et al.  Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation , 1993, Nature.

[24]  Robert R. Birge,et al.  Applications of fluorescence in the biomedical sciences , 1986 .

[25]  S W Hell,et al.  Coherent use of opposing lenses for axial resolution increase. II. Power and limitation of nonlinear image restoration. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[26]  S W Hell,et al.  Confocal microscopy with an increased detection aperture: type-B 4Pi confocal microscopy. , 1994, Optics letters.

[27]  Martin Schrader,et al.  Three-dimensional super-resolution with a 4Pi-confocal microscope using image restoration , 1998 .

[28]  S. Turner,et al.  Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations , 2003, Science.

[29]  Alexander Egner,et al.  4Pi-microscopy of the Golgi apparatus in live mammalian cells. , 2004, Journal of structural biology.

[30]  Alexander Egner,et al.  Fast 100-nm resolution three-dimensional microscope reveals structural plasticity of mitochondria in live yeast , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[31]  David A. Agard,et al.  Sevenfold improvement of axial resolution in 3D wide-field microscopy using two objective lenses , 1995, Electronic Imaging.

[32]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[33]  S. Hell,et al.  Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. , 1994, Optics letters.

[34]  M. Gustafsson Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy , 2000, Journal of microscopy.

[35]  S W Hell,et al.  Breaking Abbe's diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  D. Zenisek,et al.  Transport, capture and exocytosis of single synaptic vesicles at active zones , 2000, Nature.

[37]  K Bahlmann,et al.  4Pi-confocal microscopy of live cells , 2002, SPIE BiOS.

[38]  S. Lukyanov,et al.  Natural Animal Coloration Can Be Determined by a Nonfluorescent Green Fluorescent Protein Homolog* , 2000, The Journal of Biological Chemistry.

[39]  Daniel Courjon,et al.  Near field optics , 1993 .

[40]  Stefan W. Hell,et al.  Single sharp spot in fluorescence microscopy of two opposing lenses. , 2001 .

[41]  W. Denk,et al.  Optical stethoscopy: Image recording with resolution λ/20 , 1984 .

[42]  Marcus Dyba,et al.  Immunofluorescence stimulated emission depletion microscopy , 2003, Nature Biotechnology.

[43]  M W Berns,et al.  Cell damage by UVA radiation of a mercury microscopy lamp probed by autofluorescence modifications, cloning assay, and comet assay. , 1996, Journal of biomedical optics.

[44]  S. Hell,et al.  Imaging and writing at the nanoscale with focused visible light through saturable optical transitions , 2003 .

[45]  Marcus Dyba,et al.  Photostability of a fluorescent marker under pulsed excited-state depletion through stimulated emission. , 2003, Applied optics.

[46]  C. Sheppard,et al.  Theory and practice of scanning optical microscopy , 1984 .

[47]  M. Gustafsson,et al.  Extended resolution fluorescence microscopy. , 1999, Current opinion in structural biology.

[48]  M. Eigen,et al.  Sorting single molecules: application to diagnostics and evolutionary biotechnology. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[49]  S. Hell,et al.  Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[50]  M. Langmeier,et al.  Synaptic vesicle size and shape profile in the kindling model of epileptogenesis , 1997, Epilepsy Research.

[51]  F. Schäfer,et al.  Dye lasers , 1973 .

[52]  E. Abbe Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung , 1873 .

[53]  Rainer Heintzmann,et al.  Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating , 1999, European Conference on Biomedical Optics.

[54]  W. Webb,et al.  Thermodynamic Fluctuations in a Reacting System-Measurement by Fluorescence Correlation Spectroscopy , 1972 .

[55]  T. Wilson,et al.  Method of obtaining optical sectioning by using structured light in a conventional microscope. , 1997, Optics letters.

[56]  Roger Y. Tsien,et al.  Creating new fluorescent probes for cell biology , 2003, Nature Reviews Molecular Cell Biology.

[57]  S. Hell Increasing the Resolution of Far-Field Fluorescence Light Microscopy by Point-Spread-Function Engineering , 2002 .

[58]  Mario Bertero,et al.  Three‐dimensional image restoration and super‐resolution in fluorescence confocal microscopy , 1990 .

[59]  Weidong Yang,et al.  Shape control of CdSe nanocrystals , 2000, Nature.