A Framework for Visualization and Exploration of Events

The expanding deployment of sensor systems that capture location, time, and multiple thematic variables is increasing the need for exploratory spatio-temporal data analysis tools. Geographic information systems (GIS) and time series analysis tools support exploration of spatial and temporal patterns respectively and independently, but tools for the exploration of both dimensions within a single system are relatively rare. The contribution of this research is a framework for the visualization and exploration of spatial, temporal, and thematic dimensions of sensor-based data. The unit of analysis is an event, a spatio-temporal data type extracted from sensor data. The conceptual framework suggests an approach for design layout that can be flexibly modified to explore spatial and temporal trends, temporal relationships among events, periodic temporal patterns, the timing of irregularly repeating events, event–event relationships in terms of thematic attributes, and event patterns at different spatial and temporal granularities. Flexible assignment of spatial, temporal, and thematic categories to a set of graphical interface elements that can be easily rearranged provides exploratory power as well as a generalizable design layout structure. The framework is illustrated with events extracted from Gulf of Maine Ocean Observing System data but the approach has broad application to other domains and applications in which time, space, and attributes need to be considered in conjunction.

[1]  C. Claramunt,et al.  HIERARCHICAL REASONING IN TIME AND SPACE , 2000 .

[2]  Ben Shneiderman,et al.  Dynamic Query Tools for Time Series Data Sets: Timebox Widgets for Interactive Exploration , 2004, Inf. Vis..

[3]  Trevor Hastie,et al.  Statistical Models in S , 1991 .

[4]  Marc Alexa,et al.  Visualizing time-series on spirals , 2001, IEEE Symposium on Information Visualization, 2001. INFOVIS 2001..

[5]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[6]  Fatih Murat Porikli,et al.  Event Detection by Eigenvector Decomposition Using Object and Frame Features , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[7]  Ben Shneiderman,et al.  LifeLines: visualizing personal histories , 1996, CHI.

[8]  Menno-Jan Kraak,et al.  A Visualization Environment for the Space-Time-Cube , 2004, SDH.

[9]  Donna Peuquet,et al.  An Event-Based Spatiotemporal Data Model (ESTDM) for Temporal Analysis of Geographical Data , 1995, Int. J. Geogr. Inf. Sci..

[10]  Jane Drummond Modelling Change in Space and Time: An Event-Based Approach , 2006 .

[11]  Benoit Beliaeff,et al.  ‘Phytoplankton events’ in French coastal waters during 1987–1997 , 2001 .

[12]  Michael F. Worboys,et al.  From Objects to Events: GEM, the Geospatial Event Model , 2004, GIScience.

[13]  Lihi Zelnik-Manor,et al.  Event-based analysis of video , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[14]  Surajit Chaudhuri,et al.  An overview of data warehousing and OLAP technology , 1997, SGMD.

[15]  Frank Höppner,et al.  Time Series Abstraction Methods - A Survey , 2002, GI Jahrestagung.

[16]  Fabian Mörchen,et al.  Discovering Temporal Knowledge in Multivariate Time Series , 2004, GfKl.

[17]  M. Kwan Gis methods in time‐geographic research: geocomputation and geovisualization of human activity patterns , 2004 .

[18]  N.R. Pettigrew,et al.  Implementing the Gulf of Maine Ocean Observing System (GoMOOS) , 2005, Europe Oceans 2005.

[19]  Gennady L. Andrienko,et al.  Interactive analysis of event data using space-time cube , 2004, Proceedings. Eighth International Conference on Information Visualisation, 2004. IV 2004..

[20]  Patrick Laube,et al.  Analyzing Relative Motion within Groups of Trackable Moving Point Objects , 2002, GIScience.

[21]  Bhavik R. Bakshi,et al.  Multiscale analysis and modeling using wavelets , 1999 .

[22]  Ranga Raju Vatsavai,et al.  Map cube: A visualization tool for spatial data warehouses , 2001 .

[23]  D. Peuquet It's About Time: A Conceptual Framework for the Representation of Temporal Dynamics in Geographic Information Systems , 1994 .

[24]  B. Marx The Visual Display of Quantitative Information , 1985 .

[25]  Richard A. Becker,et al.  The Visual Design and Control of Trellis Display , 1996 .

[26]  Jaideep Srivastava,et al.  Event detection from time series data , 1999, KDD '99.

[27]  J. V. van Wijk,et al.  Cluster and calendar based visualization of time series data , 1999, Proceedings 1999 IEEE Symposium on Information Visualization (InfoVis'99).

[28]  Richard A. Becker,et al.  Cave Plots: A Graphical Technique for Comparing Time Series , 1994 .

[29]  Fei Wu,et al.  Knowledge discovery in time-series databases , 2001 .

[30]  Anthony Stefanidis,et al.  Modeling and comparing change using spatiotemporal helixes , 2003, GIS '03.

[31]  Christophe Claramunt,et al.  Managing Time in GIS: An Event-Oriented Approach , 1995, Temporal Databases.

[32]  Ulanbek D. Turdukulov,et al.  Connecting Users with Their Data: An Environment to Explore the Morphodynamics of Rip Channels , 2007, Cartogr. Int. J. Geogr. Inf. Geovisualization.

[33]  Ramakant Nevatia,et al.  Event Detection and Analysis from Video Streams , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  John V. Carlis,et al.  Interactive visualization of serial periodic data , 1998, UIST '98.

[35]  Masahito Hirakawa,et al.  Interactive visualization of spatiotemporal patterns using spirals on a geographical map , 1999, Proceedings 1999 IEEE Symposium on Visual Languages.

[36]  Torsten Hägerstraand WHAT ABOUT PEOPLE IN REGIONAL SCIENCE , 1970 .

[37]  Tamara Munzner,et al.  BinX: Dynamic Exploration of Time Series Datasets Across Aggregation Levels , 2004 .