Amphoteric oxide semiconductors for energy conversion devices: a tutorial review.

In this tutorial review, we discuss the defect chemistry of selected amphoteric oxide semiconductors in conjunction with their significant impact on the development of renewable and sustainable solid state energy conversion devices. The effect of electronic defect disorders in semiconductors appears to control the overall performance of several solid-state ionic devices that include oxide ion conducting solid oxide fuel cells (O-SOFCs), proton conducting solid oxide fuel cells (H-SOFCs), batteries, solar cells, and chemical (gas) sensors. Thus, the present study aims to assess the advances made in typical n- and p-type metal oxide semiconductors with respect to their use in ionic devices. The present paper briefly outlines the key challenges in the development of n- and p-type materials for various applications and also tries to present the state-of-the-art of defect disorders in technologically related semiconductors such as TiO(2), and perovskite-like and fluorite-type structure metal oxides.

[1]  A. Kaiser,et al.  Niobia Based Rutile Materials as SOFC Anodes , 2001 .

[2]  Harry L. Tuller,et al.  Defect Structure and Electrical Properties of Nonstoichiometric CeO2 Single Crystals , 1979 .

[3]  H. Inaba,et al.  Electronic conductivity, Seebeck coefficient, defect and electronic structure of nonstoichiometric La1−xSrxMnO3 , 2000 .

[4]  Zhenghao Chen,et al.  In-doped SrTiO3 ceramic thin films , 2002 .

[5]  J. Canales‐Vázquez,et al.  Electrical properties in La2Sr4Ti6O19$minus;$delta;: a potential anode for high temperature fuel cells , 2003 .

[6]  J. Nowotny,et al.  Defect disorder of titanium dioxide. , 2006, The journal of physical chemistry. B.

[7]  J. Ruiz-Morales,et al.  Structural and electrochemical characterisation of Pr0.7Ca0.3Cr1−yMnyO3−δ as symmetrical solid oxide fuel cell electrodes , 2009 .

[8]  J. Barber,et al.  Recent advances in hybrid photocatalysts for solar fuel production , 2012 .

[9]  Ellen Ivers-Tiffée,et al.  Electronic Structure, Defect Chemistry, and Transport Properties of SrTi1-xFexO3-y Solid Solutions , 2006 .

[10]  J. Nowotny,et al.  Electrical properties of niobium-doped titanium dioxide. 1. Defect disorder. , 2006, The journal of physical chemistry. B.

[11]  U. Balachandran,et al.  Electrical conductivity in non-stoichiometric titanium dioxide at elevated temperatures , 1988 .

[12]  A. Petric,et al.  Electrical Properties of Yttrium-Doped Strontium Titanate under Reducing Conditions , 2002 .

[13]  L. Singheiser,et al.  Untersuchung der Fehlordnung von TiO2 (Rutil) mit Hilfe von Leitfähigkeits‐ und Überführungsmessungen , 1977 .

[14]  D. M. Smyth,et al.  Calcium as an Acceptor Impurity in BaTiO3 , 1987 .

[15]  C. Rossignol,et al.  Cathode Materials for Reduced-Temperature SOFCs , 2003 .

[16]  V. Cherepanov,et al.  Crystal structure, electrical and magnetic properties of La1 − xSrxCoO3 − y , 1995 .

[17]  Chunwen Sun,et al.  Cathode materials for solid oxide fuel cells: a review , 2010 .

[18]  N. Nachtrieb,et al.  The chemistry of imperfect crystals , 1973 .

[19]  Yu Ren,et al.  Ordered mesoporous metal oxides: synthesis and applications. , 2012, Chemical Society reviews.

[20]  U. Guth,et al.  Crystal structure and electrical conductivity of lanthanum–calcium chromites–titanates La1−xCaxCr1−yTiyO3−δ (x=0–1, y=0–1) , 2004 .

[21]  S. Louie,et al.  Structural and electronic properties of n-doped and p-dopedSrTiO3 , 2004 .

[22]  John T. S. Irvine,et al.  A redox-stable efficient anode for solid-oxide fuel cells , 2003, Nature materials.

[23]  G. L. Sharma,et al.  Mechanism of highly sensitive and fast response Cr doped TiO2 oxygen gas sensor , 1997 .

[24]  H. Tuller,et al.  Doped Ceria as a Solid Oxide Electrolyte , 1975 .

[25]  O. Joubert,et al.  New SOFC electrode materials: The Ni-substituted LSCM-based compounds (La0.75Sr0.25)(Cr0.5Mn0.5 − xNix)O3 − δ and (La0.75Sr0.25)(Cr0.5 − xNixMn0.5)O3 − δ , 2010 .

[26]  J. Nowotny,et al.  Defect Chemistry of Titanium Dioxide. Application of Defect Engineering in Processing of TiO2-Based Photocatalysts† , 2008 .

[27]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[28]  J. Nowotny,et al.  Electrical properties and defect chemistry of TiO2 single crystal. IV. Prolonged oxidation kinetics and chemical diffusion. , 2006, The journal of physical chemistry. B.

[29]  D. C. Cronemeyer Electrical and Optical Properties of Rutile Single Crystals , 1952 .

[30]  F. Tietz,et al.  Impedance studies on chromite-titanate porous electrodes under reducing conditions , 2001 .

[31]  S. Singhal,et al.  Advanced anodes for high-temperature fuel cells , 2004, Nature materials.

[32]  Ladislav Kavan,et al.  Organized mesoporous TiO2 films exhibiting greatly enhanced performance in dye-sensitized solar cells. , 2005, Nano letters.

[33]  K. P. Ong,et al.  Electrical conductivity and performance of doped LaCrO3 perovskite oxides for solid oxide fuel cells , 2008 .

[34]  Makoto Egashira,et al.  Design of Mesoporous Oxides as Semiconductor Gas Sensor Materials , 2003 .

[35]  J. Fergus Perovskite oxides for semiconductor-based gas sensors , 2007 .

[36]  F. Chen,et al.  A Novel Electrode Material for Symmetrical SOFCs , 2010, Advanced materials.

[37]  Jinwoo Lee,et al.  Ordered Mesoporous SnO2−Based Photoanodes for High-Performance Dye-Sensitized Solar Cells , 2010 .

[38]  Juan Carlos Ruiz-Morales,et al.  On the simultaneous use of La0.75Sr0.25Cr0.5Mn0.5O3−δ as both anode and cathode material with improved microstructure in solid oxide fuel cells , 2006 .

[39]  U. Balachandran,et al.  On the defect structure of calcium titanate with nonideal cationic ratio , 1982 .

[40]  Avelino Corma,et al.  Hierarchically mesostructured doped CeO2 with potential for solar-cell use , 2004, Nature materials.

[41]  C. Ftikos,et al.  Preparation and characterization of Pr1-xSrxMnO3 ± δ (x = 0, 0.15, 0.3, 0.4, 0.5) as a potential SOFC cathode material operating at intermediate temperatures (500–700 °C) , 1997 .

[42]  Z. Zhiyong,et al.  Electronic structure and optical properties of In-doped SrTiO3 by density function theory , 2007 .

[43]  T. Jardiel,et al.  Electrochemical properties of novel SOFC dual electrode La0.75Sr0.25Cr0.5Mn0.3Ni0.2O3−δ , 2011 .

[44]  J. Irvine,et al.  The optimisation of mixed conduction in potential S.O.F.C. anode materials , 1998 .

[45]  J. Nowotny,et al.  Electrical properties and defect chemistry of TiO2 single crystal. I. Electrical conductivity. , 2006, The journal of physical chemistry. B.

[46]  Zongping Shao,et al.  A new symmetric solid-oxide fuel cell with La0.8Sr0.2Sc0.2Mn0.8O3-δ perovskite oxide as both the anode and cathode , 2009 .

[47]  G. Meng,et al.  Simple solid oxide fuel cells , 2010 .

[48]  John T. S. Irvine,et al.  A symmetrical solid oxide fuel cell demonstrating redox stable perovskite electrodes , 2006 .

[49]  F. Tietz,et al.  Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes , 2000 .

[50]  K. Poeppelmeier,et al.  Electron/hole and ion transport in La1-xSrxFeO3-delta , 2003 .

[51]  J. Baumard,et al.  Electrical properties and defect structure of rutile slightly doped with Cr and Ta , 1980 .

[52]  T. Higuchi,et al.  Electronic structure of p -type SrTiO 3 by photoemission spectroscopy , 1998 .

[53]  M. Rȩkas,et al.  Defect structure, electrical properties and transport in barium titanate. III. Electrical conductivity, thermopower and transport in single crystalline BaTiO3 , 1994 .

[54]  J. Baukus,et al.  Electrical conductivity of nonstoichiometric rutile single crystals from 1000° to 1500°C , 1966 .

[55]  M. Rȩkas,et al.  SEMICONDUCTING PROPERTIES OF UNDOPED TiO2 , 1997 .

[56]  P. Gómez‐Romero,et al.  Fe-substituted (La,Sr)TiO3 as potential electrodes for symmetrical fuel cells (SFCs) , 2007 .

[57]  R. N. Blumenthal,et al.  A thermodynamic and electrical conductivity study of nonstoichiometric cerium dioxide , 1993 .

[58]  U. Balachandran,et al.  Electrical conductivity in strontium titanate , 1981 .