Low Response Variability in Simultaneously Recorded Retinal, Thalamic, and Cortical Neurons

[1]  R. Stein A THEORETICAL ANALYSIS OF NEURONAL VARIABILITY. , 1965, Biophysical journal.

[2]  R. W. Rodieck Maintained activity of cat retinal ganglion cells. , 1967, Journal of neurophysiology.

[3]  H. Barlow,et al.  Changes in the maintained discharge with adaptation level in the cat retina , 1969, The Journal of physiology.

[4]  K. Sanderson,et al.  The projection of the visual field to the lateral geniculate and medial interlaminar nuclei in the cat , 1971, The Journal of comparative neurology.

[5]  M C Teich,et al.  Refractoriness in the maintained discharge of the cat's retinal ganglion cell. , 1978, Journal of the Optical Society of America.

[6]  Giovanni Vannucci,et al.  Effects of rate variation on the counting statistics of dead-time-modified Poisson processes , 1978 .

[7]  J. Pettigrew,et al.  Improved use of tapetal reflection for eye-position monitoring. , 1979, Investigative ophthalmology & visual science.

[8]  J. Movshon,et al.  The statistical reliability of signals in single neurons in cat and monkey visual cortex , 1983, Vision Research.

[9]  K. Tanaka Cross-correlation analysis of geniculostriate neuronal relationships in cats. , 1983, Journal of neurophysiology.

[10]  M W Levine,et al.  Statistics of the maintained discharge of cat retinal ganglion cells. , 1983, The Journal of physiology.

[11]  J. Malpeli,et al.  Cat medial interlaminar nucleus: retinotopy, relation to tapetum and implications for scotopic vision. , 1984, Journal of neurophysiology.

[12]  R. Llinás,et al.  Ionic basis for the electro‐responsiveness and oscillatory properties of guinea‐pig thalamic neurones in vitro. , 1984, The Journal of physiology.

[13]  I. Ohzawa,et al.  The effects of contrast on visual orientation and spatial frequency discrimination: a comparison of single cells and behavior. , 1987, Journal of neurophysiology.

[14]  A. Sestokas,et al.  Response variability of X- and Y-cells in the dorsal lateral geniculate nucleus of the cat. , 1988, Journal of neurophysiology.

[15]  R. Llinás,et al.  The functional states of the thalamus and the associated neuronal interplay. , 1988, Physiological reviews.

[16]  J. Molenaar,et al.  The spike generating mechanism of cat retinal ganglion cells , 1989, Vision Research.

[17]  D. McCormick,et al.  Functional implications of burst firing and single spike activity in lateral geniculate relay neurons , 1990, Neuroscience.

[18]  J. Malpeli,et al.  Acuity-sensitivity trade-offs of X and Y cells in the cat lateral geniculate complex: role of the medial interlaminar nucleus in scotopic vision. , 1992, Journal of neurophysiology.

[19]  S. Sherman,et al.  Effects of membrane voltage on receptive field properties of lateral geniculate neurons in the cat: contributions of the low-threshold Ca2+ conductance. , 1992, Journal of neurophysiology.

[20]  M W Levine,et al.  Variability of responses of cat retinal ganglion cells , 1992, Visual Neuroscience.

[21]  William R. Softky,et al.  The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[22]  P Heggelund,et al.  Response variability of single cells in the dorsal lateral geniculate nucleus of the cat. Comparison with retinal input and effect of brain stem stimulation. , 1994, Journal of neurophysiology.

[23]  R. Reid,et al.  Specificity of monosynaptic connections from thalamus to visual cortex , 1995, Nature.

[24]  K. Martin,et al.  Excitatory synaptic inputs to spiny stellate cells in cat visual cortex , 1996, Nature.

[25]  Pratik Mukherjee,et al.  Tailoring of variability in the lateral geniculate nucleus of the cat , 1996, Biological Cybernetics.

[26]  Robert G. Turcott,et al.  Temporal correlation in cat striate-cortex neural spike trains , 1996 .

[27]  S. Sherman,et al.  Dual response modes in lateral geniculate neurons: Mechanisms and functions , 1996, Visual Neuroscience.

[28]  David Ferster,et al.  Is Neural Noise Just a Nuisance? , 1996, Science.

[29]  R. Reid,et al.  Precisely correlated firing in cells of the lateral geniculate nucleus , 1996, Nature.

[30]  B. Knight,et al.  Response variability and timing precision of neuronal spike trains in vivo. , 1997, Journal of neurophysiology.

[31]  D. Snodderly,et al.  Response Variability of Neurons in Primary Visual Cortex (V1) of Alert Monkeys , 1997, The Journal of Neuroscience.

[32]  R. Shapley,et al.  The use of m-sequences in the analysis of visual neurons: Linear receptive field properties , 1997, Visual Neuroscience.

[33]  D. G. Albrecht,et al.  Visual cortex neurons in monkeys and cats: Detection, discrimination, and identification , 1997, Visual Neuroscience.

[34]  Hans G. Feichtinger,et al.  Analysis, Synthesis, and Estimation of Fractal-Rate Stochastic Point Processes , 1997, adap-org/9709006.

[35]  G D Lewen,et al.  Reproducibility and Variability in Neural Spike Trains , 1997, Science.

[36]  Michael J. Berry,et al.  The structure and precision of retinal spike trains. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Y. Frégnac,et al.  A phenomenological model of visually evoked spike trains in cat geniculate nonlagged X-cells , 1998, Visual Neuroscience.

[38]  Michael J. Berry,et al.  Refractoriness and Neural Precision , 1997, The Journal of Neuroscience.

[39]  L. P. O'Keefe,et al.  The influence of fixational eye movements on the response of neurons in area MT of the macaque , 1998, Visual Neuroscience.

[40]  S. Sherman,et al.  Response latencies of cells in the cat's lateral geniculate nucleus are less variable during burst than tonic firing , 1998, Visual Neuroscience.

[41]  T. Albright,et al.  Efficient Discrimination of Temporal Patterns by Motion-Sensitive Neurons in Primate Visual Cortex , 1998, Neuron.

[42]  W. Newsome,et al.  The Variable Discharge of Cortical Neurons: Implications for Connectivity, Computation, and Information Coding , 1998, The Journal of Neuroscience.

[43]  B. Richmond,et al.  Coding strategies in monkey V1 and inferior temporal cortices. , 1998, Journal of neurophysiology.

[44]  P. Kara,et al.  Arginine Analogs Modify Signal Detection by Neurons in the Visual Cortex , 1999, The Journal of Neuroscience.

[45]  Carrie J. McAdams,et al.  Effects of Attention on the Reliability of Individual Neurons in Monkey Visual Cortex , 1999, Neuron.

[46]  G. Gerstein,et al.  Trial-to-Trial Variability and State-Dependent Modulation of Auditory-Evoked Responses in Cortex , 1999, The Journal of Neuroscience.

[47]  B J Richmond,et al.  Stochastic nature of precisely timed spike patterns in visual system neuronal responses. , 1999, Journal of neurophysiology.

[48]  C. Koch,et al.  Encoding of visual information by LGN bursts. , 1999, Journal of neurophysiology.

[49]  R. Reid,et al.  Temporal Coding of Visual Information in the Thalamus , 2000, The Journal of Neuroscience.

[50]  A. Zador,et al.  Neural representation and the cortical code. , 2000, Annual review of neuroscience.