Infinite products and normalized quotients of ypergeometric functions

For $r \in (0,1)$ and $a \in (0,1)$ the authors consider the quotient of hypergeometric functions $$ \mu_a(r)\equiv c F(a,1-a;1;1-r^2)/F(a,1-a;1;r^2), $$ where the normalizing coefficient $c = \pi/(2 \sin(\pi a)) .$ With this choice of $c,$ $\mu(r) \equiv \mu_{1/2}(r)$, where $\mu(r)$ is the modulus of the Grotzsch ring $B^2 \setminus [0,r]$ in the plane. A new infinite product expansion is given for $\mu(r).$ It is shown that several well-known properties of the function $\mu(r)$ have their counterparts for $\mu_a(r).$

[1]  J. M. Thomas,et al.  Conformal Invariants. , 1926, Proceedings of the National Academy of Sciences of the United States of America.

[2]  M. Vuorinen,et al.  Functional inequalities for the quotients of hypergeometric functions , 1998 .

[3]  Bruce C. Berndt,et al.  Ramanujan's theory of theta-functions , 1993 .

[4]  Richard Askey,et al.  Ramanujan and hypergeometric and basic hypergeometric series , 1990 .

[5]  Matti Vuorinen,et al.  Conformal Geometry and Quasiregular Mappings , 1988 .

[6]  Doron Zeilberger,et al.  An algorithmic proof theory for hypergeometric (ordinary and “q”) multisum/integral identities , 1992 .

[7]  Matti Vuorinen,et al.  HYPERGEOMETRIC FUNCTIONS AND ELLIPTIC INTEGRALS , 1992 .

[8]  P. Byrd,et al.  Handbook of Elliptic Integrals for Engineers and Physicists , 2014 .

[9]  F. Bowman Introduction to Elliptic Functions with Applications , 1961 .

[10]  Jonathan M. Borwein,et al.  Pi and the AGM , 1999 .

[11]  C. Jacobi,et al.  Fundamenta nova theoriae functionum ellipticarum , 1829 .

[12]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .

[13]  The Distortion Theorem for quasiconformal mappings, Schottky’s Theorem and holomorphic motions , 1997 .

[14]  Matti Vuorinen,et al.  Generalized elliptic integrals and modular equations , 2000 .

[15]  R. Barnard,et al.  INEQUALITIES FOR ZERO-BALANCED HYPERGEOMETRIC FUNCTIONS , 1995 .

[16]  Bruce C. Berndt,et al.  Ramanujan’s Theories of Elliptic Functions to Alternative Bases , 1995 .

[17]  S. Vuorinen Duplication inequalities for the ratios of hypergeometric functions , 1999 .

[18]  M. Vuorinen,et al.  Landen inequalities for hypergeometric functions , 1999, Nagoya Mathematical Journal.

[19]  Frank G. Garvan Ramanujan's Theories of Elliptic Functions to Alternative Bases-a Symbolic Excursion , 1995, J. Symb. Comput..

[20]  V. Varadarajan,et al.  Linear meromorphic differential equations: A modern point of view , 1996 .

[21]  Elliptic Integral Inequalities, with Applications , 1998 .

[22]  G. Anderson,et al.  Conformal Invariants, Inequalities, and Quasiconformal Maps , 1997 .