Influence of Hydrostatic Extrusion on the Mechanical Properties of the Model Al-Mg Alloys

[1]  O. Muránsky,et al.  Multiple strengthening mechanisms in high strength ultrafine-grained Al–Mg alloys , 2020 .

[2]  A. Yadav,et al.  A comparative study of 5083 aluminium alloy and 316L stainless steel for shipbuilding material , 2020 .

[3]  J. Mizera,et al.  The influence of combined hydrostatic extrusion and rolling on the microstructure, texture and mechanical properties of Al-Li alloys , 2019, Journal of Manufacturing Processes.

[4]  Ying Deng,et al.  Microstructure and mechanical properties of severely deformed Al-Mg-Sc-Zr alloy and their evolution during annealing , 2019, Materials Science and Engineering: A.

[5]  R. Valiev,et al.  Effect of Mg on microstructure and mechanical properties of Al-Mg alloys produced by high pressure torsion , 2019, Scripta Materialia.

[6]  R. Valiev,et al.  Review on superior strength and enhanced ductility of metallic nanomaterials , 2018 .

[7]  M. Kulczyk,et al.  Enhanced strength and electrical conductivity of ultrafine-grained Al-Mg-Si alloy processed by hydrostatic extrusion , 2018 .

[8]  J. Smalc-Koziorowska,et al.  Mechanical properties and microstructure of ultrafine grained commercial purity aluminium prepared by cryo-hydrostatic extrusion , 2017 .

[9]  Y. Estrin,et al.  Fundamentals of Superior Properties in Bulk NanoSPD Materials , 2016 .

[10]  Dan Maimon,et al.  ON THE USE OF ALUMINIUM IN SHIPBUILDING , 2016 .

[11]  M. Kulczyk,et al.  Mechanical properties and electrical conductivity of Al 6101 and 6201 alloys processed by hydro-extrusion , 2014 .

[12]  Chang Liu,et al.  Microstructure evolution of heavily deformed AA5083 Al-Mg alloy studied by positron annihilation spectroscopy , 2014 .

[13]  M. Kulczyk,et al.  Severe Plastic Deformation Induced in Al, Al-Si, Ag and Cu by Hydrostatic Extrusion , 2014 .

[14]  W. Pachla,et al.  Microstructure and Mechanical Properties of AA5483 after Combination of ECAP and Hydrostatic Extrusion SPD Processes , 2014 .

[15]  R. Valiev,et al.  Structure and mechanical properties of nanostructured Al–Mg alloys processed by severe plastic deformation , 2013, Journal of Materials Science.

[16]  R. Valiev,et al.  Nanostructured aluminium alloys produced by severe plastic deformation: New horizons in development , 2013 .

[17]  Y. Birol Effect of solute Mg on grain size of aluminium alloys , 2012 .

[18]  K. Kurzydłowski,et al.  Ab initio calculations of the generalized stacking fault energy in aluminium alloys , 2011 .

[19]  N. Gao,et al.  Effect of Mg addition on strengthening of aluminium alloys subjected to different strain paths in high pressure torsion , 2011 .

[20]  Y. Takigawa,et al.  Effect of Mg content on the minimum grain size of Al–Mg alloys obtained by friction stir processing , 2011 .

[21]  R. Valiev,et al.  Towards superstrength of nanostructured metals and alloys processed by SPD , 2011 .

[22]  Zhongchang Wang,et al.  Microstructure and mechanical property of dual-directional-extruded Mg alloy AZ31 , 2010 .

[23]  R. Valiev,et al.  Grain refinement in nanostructured Al–Mg alloys subjected to high pressure torsion , 2010 .

[24]  A. Solonin,et al.  Study of work hardening of quenched and naturally aged Al–Mg and Al–Cu alloys , 2009 .

[25]  K. Kurzydłowski,et al.  Recent development in grain refinement by hydrostatic extrusion , 2008, Journal of Materials Science.

[26]  K. Kurzydłowski,et al.  Fabrication of Nanostructured Materials by Hydrostatic Extrusion: Advantages and Limitations , 2007 .

[27]  K. Kurzydłowski,et al.  The Influence of Hydrostatic Extrusion on the Microstructure of 6082 Aluminium Alloy , 2006 .

[28]  K. Kurzydłowski,et al.  Influence of Severe Plastic Deformation on the PLC Effect and Mechanical Properties in Al 5XXX Alloy , 2006 .

[29]  E. Nes,et al.  Strengthening mechanisms in solid solution aluminum alloys , 2006 .

[30]  K. Kurzydłowski,et al.  Microstructure and Mechanical Properties of 6082 Aluminum Alloy Processed by Hydrostatic Extrusion , 2006 .

[31]  W. Zieliński,et al.  Structure and properties of nanomaterials produced by severe plastic deformation , 2006 .

[32]  Yumin Zhao,et al.  The effect of Mg precipitation on the mechanical properties of 5xxx aluminum alloys , 2005 .

[33]  D. Shin,et al.  Tensile deformation characteristics of a nano-structured 5083 Al alloy , 2005 .

[34]  T. Langdon,et al.  Effect of Mg addition on microstructure and mechanical properties of aluminum , 2004 .

[35]  J. Bowen,et al.  Ultra-fine grain structures in aluminium alloys by severe deformation processing , 2004 .

[36]  M. Richert,et al.  Effect of large deformations on the microstructure of aluminium alloys , 2003 .

[37]  F. Barlat,et al.  A simple model for dislocation behavior, strain and strain rate hardening evolution in deforming aluminum alloys , 2002 .

[38]  J. Kaufman Introduction to Aluminum Alloys and Tempers , 2000 .

[39]  R. Valiev,et al.  Bulk nanostructured materials from severe plastic deformation , 2000 .

[40]  M. Nedjar,et al.  Precipitation in solid solutions of Al-Mg , 1999 .

[41]  P. Lukáč,et al.  Modelling of strain hardening and its relation to the onset of Portevin-Le Chatelier effect in Al-Mg alloys , 1997 .

[42]  P. Cooper,et al.  Effects of solutes on grain refinement of selected wrought aluminium alloys , 1997 .

[43]  R. Valiev,et al.  An investigation of microstructural stability in an AlMg alloy with submicrometer grain size , 1996 .

[44]  J. Embury,et al.  Microstructural aspects of strain localization in AlMg alloys , 1986 .

[45]  H. Jaeger Aluminium in Shipbuilding , 1955, Nature.