An Investigation Into the Gustafsson Limit for Small Planar Antennas Using Optimization

The fundamental limit for small antennas provides a guide to the effectiveness of designs. Gustafsson et al., Yaghjian et al., and Mohammadpour-Aghdam et al. independently deduced a variation of the Chu-Harrington limit for planar antennas in different forms. Using a multi-parameter optimization technique based on the ant colony algorithm, planar, meander dipole antenna designs were selected on the basis of lowest resonant frequency and maximum radiation efficiency. The optimal antenna designs across the spectrum from 570 to 1750 MHz occupying an area of 56 mm × 25 mm were compared with these limits calculated using the polarizability tensor. The results were compared with Sievenpiper's comparison of published planar antenna properties. The optimized antennas have greater than 90% polarizability compared to the containing conductive box in the range 0.3 <; ka <; 1.1, so verifying the optimization algorithm. The generalized absorption efficiency of the small meander line antennas is less than 50%, and results are the same for both PEC and copper designs.

[1]  D.V. Thiel,et al.  Antenna Efficiency Calculations for Electrically Small, RFID Antennas , 2007, IEEE Antennas and Wireless Propagation Letters.

[2]  Andrew J. Poggio,et al.  Numerical Electromagnetic Code (NEC) , 1979, 1979 IEEE International Symposium on Electromagnetic Compatibility.

[3]  Robert C. Hansen,et al.  Small Antenna Handbook , 2011 .

[4]  Mats Gustafsson,et al.  Absorption efficiency and physical bounds on antennas , 2010 .

[5]  A.D. Yaghjian,et al.  Impedance, bandwidth, and Q of antennas , 2003, IEEE Transactions on Antennas and Propagation.

[6]  M. Gustafsson,et al.  Illustrations of New Physical Bounds on Linearly Polarized Antennas , 2009, IEEE Transactions on Antennas and Propagation.

[7]  Sanghoon Kim,et al.  Experimental Validation of Performance Limits and Design Guidelines for Small Antennas , 2012, IEEE Transactions on Antennas and Propagation.

[8]  L. J. Chu Physical Limitations of Omni‐Directional Antennas , 1948 .

[9]  G. A. E. Vandenbosch Explicit Relation Between Volume and Lower Bound for Q for Small Dipole Topologies , 2012, IEEE Transactions on Antennas and Propagation.

[10]  A. Yaghjian,et al.  Lower Bounds on the Q of Electrically Small Dipole Antennas , 2010, IEEE Transactions on Antennas and Propagation.

[11]  R. Harrington On the gain and beamwidth of directional antennas , 1958 .

[12]  M. Gustafsson,et al.  Limitations on the effective area and bandwidth product for array antennas , 2010, 2010 URSI International Symposium on Electromagnetic Theory.

[13]  S.R. Best,et al.  A Tutorial on the Receiving and Scattering Properties of Antennas , 2009, IEEE Antennas and Propagation Magazine.

[14]  Gerhard Weis,et al.  Using Ant Colony Optimisation to Construct Meander-Line RFID Antennas , 2009 .

[15]  D.V. Thiel,et al.  Tapered Meander Line Antenna for Maximum Efficiency and Minimal Environmental Impact , 2009, IEEE Antennas and Wireless Propagation Letters.

[16]  D. Thiel,et al.  Polarizablity of 2D and 3D conducting objects using method of moments , 2013, 1402.3681.

[17]  H.A. Wheeler,et al.  Fundamental Limitations of Small Antennas , 1947, Proceedings of the IRE.

[18]  D. Sjöberg Variational principles for the static electric and magnetic polarizabilities of anisotropic media with perfect electric conductor inclusions , 2009 .

[19]  Guy A E Vandenbosch Simple Procedure to Derive Lower Bounds for Radiation $Q$ of Electrically Small Devices of Arbitrary Topology , 2011, IEEE Transactions on Antennas and Propagation.

[20]  R. Collin,et al.  Evaluation of antenna Q , 1964 .

[21]  Andrew Lewis,et al.  Multiobjective optimization for small meander wire dipole antennas in a fixed area using ant colony system , 2009 .

[22]  D.V. Thiel,et al.  Tapered wire antenna design for maximum efficiency and minimal environmental impact , 2008, 2008 8th International Symposium on Antennas, Propagation and EM Theory.

[23]  Local search for Ant colony system to improve the efficiency of small meander line RFID antennas , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[24]  S. Best,et al.  Impedance, bandwidth, and Q of antennas , 2005 .

[25]  Chi-Chih Chen,et al.  Small Antennas:Miniaturization Techniques & Applications , 2009 .

[26]  David V. Thiel,et al.  Exploring the fundamental limits of planar antennas using optimization techniques , 2013, 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI).

[27]  P. Hazdra,et al.  A Method for the Evaluation of Radiation Q Based on Modal Approach , 2012, IEEE Transactions on Antennas and Propagation.

[28]  Guy A. E. Vandenbosch,et al.  Physical bound on Q factor for planar antennas , 2011, 2011 41st European Microwave Conference.

[29]  Manos M. Tentzeris,et al.  Small Antennas: Miniaturization Techniques and Applications 2016 , 2014 .

[30]  S. A Re-Examination of the Fundamental Limits on the Radiation Q of Electrically Small Antennas , 2008 .

[31]  Gerhard Weis,et al.  Optimising efficiency and gain of small meander line RFID antennas using ant colony system , 2009, 2009 IEEE Congress on Evolutionary Computation.

[32]  Mats Gustafsson Physical bounds on antennas of arbitrary shape , 2011, 2011 Loughborough Antennas & Propagation Conference.

[33]  David M. Pozar,et al.  New results for minimum Q, maximum gain, and polarization properties of electrically small arbitrary antennas , 2009, 2009 3rd European Conference on Antennas and Propagation.

[34]  Q limits for arbitrary shape antennas using characteristic modes , 2012, 2012 6th European Conference on Antennas and Propagation (EUCAP).

[35]  D. Thiel,et al.  The effect of lossy dielectric objects on a UHF RFID meander line antenna , 2012, Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation.

[36]  G. Vandenbosch,et al.  Reactive Energies, Impedance, and ${\rm Q}$ Factor of Radiating Structures , 2010, IEEE Transactions on Antennas and Propagation.

[37]  M. Gustafsson,et al.  Physical limitations on antennas of arbitrary shape , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[38]  Robert C. Hansen,et al.  Small Antenna Handbook: Hansen/Small Antenna , 2011 .