Extending the Computational Reach of a Superconducting Qutrit Processor

Quantum computing with qudits is an emerging approach that exploits a larger, more-connected computational space, providing advantages for many applications, including quantum simulation and quantum error correction. Nonetheless, qudits are typically afflicted by more complex errors and suffer greater noise sensitivity which renders their scaling difficult. In this work, we introduce techniques to tailor and mitigate arbitrary Markovian noise in qudit circuits. We experimentally demonstrate these methods on a superconducting transmon qutrit processor, and benchmark their effectiveness for multipartite qutrit entanglement and random circuit sampling, obtaining up to 3x improvement in our results. To the best of our knowledge, this constitutes the first ever error mitigation experiment performed on qutrits. Our work shows that despite the intrinsic complexity of manipulating higher-dimensional quantum systems, noise tailoring and error mitigation can significantly extend the computational reach of today's qudit processors.

[1]  Joel J. Wallman,et al.  The Error Reconstruction and Compiled Calibration of Quantum Computing Cycles , 2023, 2303.17714.

[2]  M. Kim,et al.  Non-Pauli errors can be efficiently sampled in qudit surface codes , 2023, 2303.16837.

[3]  Fermilab,et al.  Dancing the Quantum Waltz: Compiling Three-Qubit Gates on Four Level Architectures , 2023, ISCA.

[4]  Y. Gefen,et al.  Dissipative preparation and stabilization of many-body quantum states in a superconducting qutrit array , 2023, 2303.12111.

[5]  Christopher N. Warren,et al.  Transmon qubit readout fidelity at the threshold for quantum error correction without a quantum-limited amplifier , 2023 .

[6]  J. Emerson,et al.  Improved quantum error correction with randomized compiling , 2023, 2303.06846.

[7]  Deepesh Kumar Lall,et al.  Emulating two qubits with a four-level transmon qudit for variational quantum algorithms , 2023, Quantum Science and Technology.

[8]  S. Aaronson,et al.  Certified Randomness from Quantum Supremacy , 2023, Electron. Colloquium Comput. Complex..

[9]  D. Schuster,et al.  Autonomous error correction of a single logical qubit using two transmons , 2023, Nature communications.

[10]  A. Jordan,et al.  Programmable Heisenberg interactions between Floquet qubits , 2022, 2211.10383.

[11]  D. Schuster,et al.  Two-Qutrit Quantum Algorithms on a Programmable Superconducting Processor , 2022, Physical Review Applied.

[12]  F. Brandão,et al.  Erasure qubits: Overcoming the $T_1$ limit in superconducting circuits , 2022, 2208.05461.

[13]  Stefan Seritan,et al.  Benchmarking quantum logic operations for achieving fault tolerance , 2022, 2207.08786.

[14]  M. Yung,et al.  Experimental Realization of Two Qutrits Gate with Tunable Coupling in Superconducting Circuits. , 2022, Physical review letters.

[15]  I. Siddiqi,et al.  High-fidelity qutrit entangling gates for superconducting circuits , 2022, Nature Communications.

[16]  T. Monz,et al.  Native qudit entanglement in a trapped ion quantum processor , 2022, Nature communications.

[17]  Trevor Vincent,et al.  Quantum computational advantage with a programmable photonic processor , 2022, Nature.

[18]  J. O'Brien,et al.  A programmable qudit-based quantum processor , 2022, Nature Communications.

[19]  Joel J. Wallman,et al.  Efficiently improving the performance of noisy quantum computers , 2022, Quantum.

[20]  E. Berg,et al.  Probabilistic error cancellation with sparse Pauli–Lindblad models on noisy quantum processors , 2022, Nature Physics.

[21]  J. Wallman,et al.  Designing Stochastic Channels , 2022, 2201.07156.

[22]  Erik J. Gustafson Noise Improvements in Quantum Simulations of sQED using Qutrits , 2022, 2201.04546.

[23]  Yang Liu,et al.  Scalable algorithm simplification using quantum AND logic , 2021, Nature Physics.

[24]  A. Fedorov,et al.  Efficient realization of quantum algorithms with qudits , 2021, 2111.04384.

[25]  B. Nachman,et al.  Computationally efficient zero-noise extrapolation for quantum-gate-error mitigation , 2021, Physical Review A.

[26]  T. Monz,et al.  A universal qudit quantum processor with trapped ions , 2021, Nature Physics.

[27]  P. Narang,et al.  Implementing a Ternary Decomposition of the Toffoli Gate on Fixed-FrequencyTransmon Qutrits , 2021, 2109.00558.

[28]  Theodore J. Yoder,et al.  Scalable error mitigation for noisy quantum circuits produces competitive expectation values , 2021, Nature Physics.

[29]  N. Didier,et al.  Realization of arbitrary doubly-controlled quantum phase gates , 2021, 2108.01652.

[30]  Haibin Zhang,et al.  Strong Quantum Computational Advantage Using a Superconducting Quantum Processor. , 2021, Physical review letters.

[31]  Mario Krenn,et al.  Experimental High-Dimensional Greenberger-Horne-Zeilinger Entanglement with Superconducting Transmon Qutrits , 2021, Physical Review Applied.

[32]  J. Emerson,et al.  Leveraging Randomized Compiling for the QITE Algorithm , 2021, 2104.08785.

[33]  A. Datta,et al.  Experimental accreditation of outputs of noisy quantum computers , 2021, Physical Review A.

[34]  Jian-Wei Pan,et al.  Quantum computational advantage using photons , 2020, Science.

[35]  Ryan Babbush,et al.  Virtual Distillation for Quantum Error Mitigation , 2020, Physical Review X.

[36]  Bálint Koczor Exponential Error Suppression for Near-Term Quantum Devices , 2020, Physical Review X.

[37]  Xiao Yuan,et al.  Hybrid Quantum-Classical Algorithms and Quantum Error Mitigation , 2020, Journal of the Physical Society of Japan.

[38]  Costin Iancu,et al.  Randomized Compiling for Scalable Quantum Computing on a Noisy Superconducting Quantum Processor , 2020, Physical Review X.

[39]  Peter J. Karalekas,et al.  Mitiq: A software package for error mitigation on noisy quantum computers , 2020, Quantum.

[40]  I. Siddiqi,et al.  Qutrit Randomized Benchmarking. , 2020, Physical review letters.

[41]  Markus Brink,et al.  Demonstration of quantum volume 64 on a superconducting quantum computing system , 2020, Quantum Science and Technology.

[42]  B. Sanders,et al.  Qudits and High-Dimensional Quantum Computing , 2020, Frontiers in Physics.

[43]  B. Nachman,et al.  Zero-noise extrapolation for quantum-gate error mitigation with identity insertions , 2020, Physical Review A.

[44]  W. Zeng,et al.  Digital zero noise extrapolation for quantum error mitigation , 2020, 2020 IEEE International Conference on Quantum Computing and Engineering (QCE).

[45]  Patrick J. Coles,et al.  Error mitigation with Clifford quantum-circuit data , 2020, Quantum.

[46]  S. Benjamin,et al.  Learning-Based Quantum Error Mitigation , 2020, PRX Quantum.

[47]  A. Morvan,et al.  Quantum Information Scrambling on a Superconducting Qutrit Processor , 2020, 2003.03307.

[48]  J. Wang,et al.  Multi-level quantum noise spectroscopy , 2020, Nature Communications.

[49]  John C. Platt,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[50]  Liang Jiang,et al.  High-Fidelity Measurement of Qubits Encoded in Multilevel Superconducting Circuits , 2019, Physical Review X.

[51]  Yao Lu,et al.  Error-mitigated quantum gates exceeding physical fidelities in a trapped-ion system , 2019, Nature Communications.

[52]  Frederic T. Chong,et al.  Asymptotic Improvements to Quantum Circuits via Qutrits , 2019, 2019 ACM/IEEE 46th Annual International Symposium on Computer Architecture (ISCA).

[53]  Matthew Alexander,et al.  A polar decomposition for quantum channels (with applications to bounding error propagation in quantum circuits) , 2019, Quantum.

[54]  J. Gambetta,et al.  Error mitigation extends the computational reach of a noisy quantum processor , 2019, Nature.

[55]  Ying Li,et al.  Quantum computation with universal error mitigation on a superconducting quantum processor , 2018, Science Advances.

[56]  A. Datta,et al.  Accrediting outputs of noisy intermediate-scale quantum computing devices , 2018, New Journal of Physics.

[57]  Ritajit Majumdar,et al.  Quantum error-correcting code for ternary logic , 2018, 1807.01863.

[58]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[59]  S. Benjamin,et al.  Practical Quantum Error Mitigation for Near-Future Applications , 2017, Physical Review X.

[60]  Kristan Temme,et al.  Error Mitigation for Short-Depth Quantum Circuits. , 2016, Physical review letters.

[61]  Ying Li,et al.  Efficient Variational Quantum Simulator Incorporating Active Error Minimization , 2016, 1611.09301.

[62]  Martin Rötteler,et al.  Factoring with Qutrits: Shor's Algorithm on Ternary and Metaplectic Quantum Architectures , 2016, ArXiv.

[63]  Eliot Kapit,et al.  Hardware-Efficient and Fully Autonomous Quantum Error Correction in Superconducting Circuits. , 2015, Physical review letters.

[64]  David R Bowler,et al.  Communication: Generalized canonical purification for density matrix minimization. , 2015, The Journal of chemical physics.

[65]  Joel J. Wallman,et al.  Noise tailoring for scalable quantum computation via randomized compiling , 2015, 1512.01098.

[66]  S. Wehner,et al.  Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres , 2015, Nature.

[67]  Liang Jiang,et al.  Overcoming erasure errors with multilevel systems , 2015, 1504.08054.

[68]  A. Retzker,et al.  Realization of a Quantum Integer-Spin Chain with Controllable Interactions , 2014, 1410.0937.

[69]  James R. Wootton,et al.  Error thresholds for Abelian quantum double models: Increasing the bit-flip stability of topological quantum memory , 2014, 1406.5974.

[70]  Earl T Campbell,et al.  Enhanced fault-tolerant quantum computing in d-level systems. , 2014, Physical review letters.

[71]  Z. Gedik,et al.  Computational speed-up with a single qudit , 2014, Scientific Reports.

[72]  Earl T. Campbell,et al.  Fast decoders for qudit topological codes , 2013, 1311.4895.

[73]  D. Browne,et al.  Magic-State Distillation in All Prime Dimensions Using Quantum Reed-Muller Codes , 2012, 1205.3104.

[74]  Marcus P. da Silva,et al.  Implementation of a Toffoli gate with superconducting circuits , 2011, Nature.

[75]  S. Filipp,et al.  Control and tomography of a three level superconducting artificial atom. , 2010, Physical review letters.

[76]  Marco Barbieri,et al.  Simplifying quantum logic using higher-dimensional Hilbert spaces , 2009 .

[77]  K J Resch,et al.  Manipulating biphotonic qutrits. , 2007, Physical review letters.

[78]  D. O’Leary,et al.  Asymptotically optimal quantum circuits for d-level systems. , 2004, Physical review letters.

[79]  A. Vaziri,et al.  Experimental two-photon, three-dimensional entanglement for quantum communication. , 2002, Physical review letters.

[80]  D. Bruß,et al.  Optimal eavesdropping in cryptography with three-dimensional quantum states. , 2001, Physical review letters.

[81]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography with 3-state systems. , 2000, Physical review letters.

[82]  N. Fisher,et al.  Probability Inequalities for Sums of Bounded Random Variables , 1994 .