Vacuum ultraviolet absorption spectrum of the van der Waals molecule Xe2. I. Ground state vibrational structure, potential well depth, and shape

The vacuum ultraviolet absorption spectrum of the van der Waals molecule Xe2 has been photographed at high resolution. Ground state vibrational spacings ΔG(v+½) with v = 0–9 have been extracted from the vibronic structure of two electronic transitions. An extrapolation procedure based on an assumed inverse sixth power long‐range potential reveals that the ground electronic state of Xe2 supports 25 or 26 bound vibrational levels. Spectroscopic values for the well depth, 195.5 cm−1, and zero‐point energy, 10.4 cm−1, are compared to results from recent molecular beam scattering experiments. The shapes of the spectroscopic and scattering potentials are examined by means of Rydberg‐Klein‐Rees plots of well depth vs well width.

[1]  G. Maitland,et al.  The pair potential energy function for krypton , 1974 .

[2]  V. H. Smith,et al.  Mist: A New Interatomic Potential Function , 1974 .

[3]  G. Scoles,et al.  Determination of the Interatomic Potential of Krypton , 1973 .

[4]  D. E. Freeman,et al.  Vacuum ultraviolet absorption spectra of the van der Waals molecules Kr2 and ArKr , 1973 .

[5]  G. Maitland A simplified representation of intermolecular potential energy , 1973 .

[6]  S. Harris,et al.  Stimulated emission in multiple‐photon‐pumped xenon and argon excimers , 1973 .

[7]  G. Maitland The determination of the intermolecular potential energy function of neon from spectroscopic, equilibrium and transport data , 1973 .

[8]  R. A. Aziz,et al.  Test of three new corresponding states potentials for Ne, Ar, Kr, and Xe with application to thermal diffusion , 1973 .

[9]  J. Watson,et al.  RKR potentials and semiclassical centrifugal constants of diatomic molecules , 1973 .

[10]  T. P. Schafer,et al.  Spectroscopic information on ground-state Ar2, Kr2, and Xe2 from interatomic potentials , 1973 .

[11]  A. S. Dickinson A new method for evaluating Rydberg-Klein-Rees integrals , 1972 .

[12]  H. Fleming,et al.  A simple numerical evaluation of the Rydberg-Klein-Rees integrals: Application to X1Σ+ state of 12C16O , 1972 .

[13]  J. Tellinghuisen Fast, accurate RKR computations , 1972 .

[14]  R. L. Roy,et al.  Improved Spectroscopic Dissociation Energy for Ground‐State Ar2 , 1972 .

[15]  J. Kestin,et al.  An extended law of corresponding states for the equilibrium and transport properties of the noble gases , 1972 .

[16]  J. Parson,et al.  Intermolecular Potentials from Crossed‐Beam Differential Elastic Scattering Measurements. IV. Ar+Ar , 1972 .

[17]  R. Zare,et al.  Rydberg-Klein-Rees potential for the X1Σ+ state of the CO molecule☆ , 1971 .

[18]  K. Yoshino,et al.  Absorption Spectrum of the Argon Molecule in the Vacuum‐uv Region , 1970 .

[19]  R. S. Mulliken Potential Curves of Diatomic Rare‐Gas Molecules and Their Ions, with Particular Reference to Xe2 , 1970 .

[20]  K. Yoshino,et al.  Absorption Spectrum of the He2 Molecule in the 510–611‐Å Range , 1969 .

[21]  V. H. Smith,et al.  Atomic interactions in the heavy Noble gases , 1974 .

[22]  G. Maitland,et al.  The forces between simple molecules , 1973 .

[23]  G. Starkschall,et al.  Error Bounds to Long‐Range Three‐Body, and Relativistic Interactions between Atoms , 1972 .

[24]  J. Barker,et al.  Atomic interactions in argon , 1968 .