Neuroradiological Viewpoint on the Diagnostics of Space-Occupying Brain Lesions

Conventional magnetic resonance (MR) imaging of space-occupying lesions may answer most of the questions concerning the diagnosis and subsequent treatment strategies if patient age, clinical and paraclinical findings are considered as well. However, crucial and relevant differential diagnoses require additional MR methods, such as diffusion-weighted imaging (DWI), perfusion-weighted imaging (PWI) and magnetic resonance spectroscopy (MRS). In necrotic ring-enhancing lesions DWI may detect inflammatory processes, whereas characteristics of the peritumoral area may help to distinguish between metastases and glioblastomas. In solid tumors DWI, PWI and MRS may also aid the differentiation between low-grade gliomas and malignant tumors, such as gliomas WHO (World Health Organization) grade III and IV and lymphomas. This review briefly explains special MR methods with respect to brain tumors and illustrates the diagnostic pathways necessary for supplying a reliable diagnosis as well as optimal pre-operative imaging of space-occupying brain lesions.ZusammenfassungUnter Berücksichtigung von Patientenalter, neurologischen Symptomen und paraklinischer Information kann man mithilfe der konventionellen Magnetresonanztomographie einen Großteil der Fragen hinsichtlich der Diagnose zerebraler Raumforderungen sowie anschließender Therapieoptionen beantworten. Wichtige Differentialdiagnosen bedürfen jedoch zusätzlicher MR Methoden wie Diffusionswichtung (DWI), MR Perfusion (PWI) und MR Spektroskopie (MRS). So kann z. B. die DWI in nekrotischen und randständig anreichernden Läsionen einen entzündlichen Prozess aufdecken, während spezielle Eigenschaften der peritumoralen Region bei der Differenzierung von Metastasen und Glioblastomen helfen. In soliden Tumoren können DWI, PWI und MRS die Unterscheidung zwischen niedriggradigen und malignen Tumoren entsprechend WHO (World Health Organization) Grad III und IV Gliomen und Lymphomen erleichtern. In dieser Übersicht werden spezielle MR Methoden in Bezug auf Hirntumore kurz dargestellt sowie diagnostische Schritte illustriert, die nötig sind, um eine verlässliche Diagnose zu stellen und eine optimale präoperative Bildgebung zu gewährleisten.

[1]  O. Ganslandt,et al.  Magnetic Resonance Spectroscopic Imaging for Visualization of the Infiltration Zone of Glioma , 2010, Central European neurosurgery.

[2]  M. Giulioni,et al.  Seizure outcome of lesionectomy in glioneuronal tumors associated with epilepsy in children. , 2005, Journal of neurosurgery.

[3]  W P Dillon,et al.  Preoperative proton MR spectroscopic imaging of brain tumors: correlation with histopathologic analysis of resection specimens. , 2001, AJNR. American journal of neuroradiology.

[4]  C R Bird,et al.  Gliomas: classification with MR imaging. , 1990, Radiology.

[5]  G. Johnson,et al.  Dynamic contrast-enhanced T2*-weighted MR imaging of tumefactive demyelinating lesions. , 2001, AJNR. American journal of neuroradiology.

[6]  B. Erickson,et al.  Pattern of T2 hypointensity associated with ring-enhancing brain lesions can help to differentiate pathology , 2006, Neuroradiology.

[7]  N. Bulakbaşı,et al.  Combination of single-voxel proton MR spectroscopy and apparent diffusion coefficient calculation in the evaluation of common brain tumors. , 2003, AJNR. American journal of neuroradiology.

[8]  G Johnson,et al.  Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging. , 1999, Radiology.

[9]  Hans-Jakob Steiger,et al.  Multimodal metabolic imaging of cerebral gliomas: positron emission tomography with [18F]fluoroethyl-L-tyrosine and magnetic resonance spectroscopy. , 2005, Journal of neurosurgery.

[10]  Alina Jurcoane,et al.  Elevated peritumoural rCBV values as a mean to differentiate metastases from high-grade gliomas , 2010, Acta Neurochirurgica.

[11]  M. Castillo,et al.  Intracranial ganglioglioma: MR, CT, and clinical findings in 18 patients. , 1990, AJNR. American journal of neuroradiology.

[12]  W. Koch,et al.  Positron Emission Tomography with O-(2-[18F]fluoroethyl)-l-tyrosine versus Magnetic Resonance Imaging in the Diagnosis of Recurrent Gliomas , 2005, Neurosurgery.

[13]  P. Lai,et al.  Brain abscess and necrotic brain tumor: discrimination with proton MR spectroscopy and diffusion-weighted imaging. , 2002, AJNR. American journal of neuroradiology.

[14]  J. Ferro,et al.  Cerebral venous thrombosis: an update , 2007, The Lancet Neurology.

[15]  J. Smirniotopoulos,et al.  MR and CT imaging of 24 pleomorphic xanthoastrocytomas (PXA) and a review of the literature , 2007, Neuroradiology.

[16]  E. Thiel,et al.  Primary central nervous system lymphomas (PCNSL): MRI features at presentation in 100 patients , 2005, Journal of Neuro-Oncology.

[17]  H. Aronen,et al.  Dynamic susceptibility contrast MRI of gliomas. , 2002, Neuroimaging clinics of North America.

[18]  S. Provencher Estimation of metabolite concentrations from localized in vivo proton NMR spectra , 1993, Magnetic resonance in medicine.

[19]  M. Essig,et al.  MR-Perfusions- und spektroskopische Bildgebung bei WHO-Grad-II-Astrozytomen , 2007, Der Radiologe.

[20]  A. Blamire,et al.  Early Temporal Variation of Cerebral Metabolites After Human Stroke: A Proton Magnetic Resonance Spectroscopy Study , 1993, Stroke.

[21]  C. Nimsky,et al.  Proton Magnetic Resonance Spectroscopic Imaging in the Border Zone of Gliomas: Correlation of Metabolic and Histological Changes at Low Tumor Infiltration—Initial Results , 2007, Investigative radiology.

[22]  H. Lanfermann,et al.  Evaluation of optimal echo time for 1H‐spectroscopic imaging of brain tumors at 3 Tesla , 2007, Journal of magnetic resonance imaging : JMRI.

[23]  Increased choline signal coinciding with malignant degeneration of cerebral gliomas: a serial proton magnetic resonance spectroscopy imaging study. , 1997 .

[24]  Glyn Johnson,et al.  Diffusion-tensor MR imaging of intracranial neoplasia and associated peritumoral edema: introduction of the tumor infiltration index. , 2004, Radiology.

[25]  J. Gillard,et al.  Diffusion-weighted MR Imaging of the brain , 2006 .

[26]  K. Schmainda,et al.  Comparison of dynamic susceptibility-weighted contrast-enhanced MR methods: recommendations for measuring relative cerebral blood volume in brain tumors. , 2008, Radiology.

[27]  H. Lanfermann,et al.  Grundlagen der 1H-MR-Spektroskopie intrakranieller Tumoren , 2002, Klinische Neuroradiologie.

[28]  Glyn Johnson,et al.  High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging. , 2002, Radiology.

[29]  D Chien,et al.  Perfusion imaging by nuclear magnetic resonance. , 1989, Magnetic resonance quarterly.

[30]  M. Takahashi,et al.  Perfusion-sensitive MR imaging of gliomas: comparison between gradient-echo and spin-echo echo-planar imaging techniques. , 2001, AJNR. American journal of neuroradiology.

[31]  M. Maeda,et al.  Double-echo perfusion-weighted MR imaging: basic concepts and application in brain tumors for the assessment of tumor blood volume and vascular permeability , 2005, European Radiology.

[32]  F. Zanella,et al.  Metabolism and regional cerebral blood volume in autoimmune inflammatory demyelinating lesions mimicking malignant gliomas , 2010, Journal of Neurology.

[33]  J. Hirsch,et al.  An Integrated Functional Magnetic Resonance Imaging Procedure for Preoperative Mapping of Cortical Areas Associated with Tactile, Motor, Language, and Visual Functions , 2000, Neurosurgery.

[34]  A. Server,et al.  Quantitative apparent diffusion coefficients in the characterization of brain tumors and associated peritumoral edema , 2009, Acta radiologica.

[35]  Elke Hattingen,et al.  Prognostic value of choline and creatine in WHO grade II gliomas , 2008, Neuroradiology.

[36]  E F Halpern,et al.  Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. , 1994, Radiology.

[37]  S. Atlas,et al.  Diffusion measurements in intracranial hematomas: implications for MR imaging of acute stroke. , 2000, AJNR. American journal of neuroradiology.

[38]  K. Ramachandran,et al.  Imaging of desmoplastic infantile ganglioglioma: a spectroscopic viewpoint , 2009, Child's Nervous System.

[39]  Glyn Johnson,et al.  Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. , 2003, AJNR. American journal of neuroradiology.

[40]  H. Lanfermann,et al.  Myo‐Inositol: a marker of reactive astrogliosis in glial tumors? , 2008, NMR in biomedicine.

[41]  H. Scherer,et al.  THE FORMS OF GROWTH IN GLIOMAS AND THEIR PRACTICAL SIGNIFICANCE , 1940 .

[42]  D. Louis WHO classification of tumours of the central nervous system , 2007 .

[43]  G. Cheon,et al.  Intracranial Ganglioglioma: Preoperative Characteristics and Oncologic Outcome after Surgery , 2002, Journal of Neuro-Oncology.

[44]  C. Stippich Presurgical Functional Magnetic Resonance Imaging (fMRI) , 2007, Clinical Neuroradiology.

[45]  N. Bulakbaşı,et al.  Dysembryoplastic neuroepithelial tumors: proton MR spectroscopy, diffusion and perfusion characteristics , 2007, Neuroradiology.

[46]  Jin-Suh Kim,et al.  Using relative cerebral blood flow and volume to evaluate the histopathologic grade of cerebral gliomas: preliminary results. , 2002, AJR. American journal of roentgenology.

[47]  P. Grenier,et al.  MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. , 1986, Radiology.

[48]  R. Sevick,et al.  How often are nonenhancing supratentorial gliomas malignant? A population study , 2002, Neurology.

[49]  C. Zimmer,et al.  Quantification of blood flow in brain tumors: comparison of arterial spin labeling and dynamic susceptibility-weighted contrast-enhanced MR imaging. , 2003, Radiology.

[50]  R. Jennis,et al.  MR imaging of brain abscesses. , 1989, AJR. American journal of roentgenology.

[51]  H. R. Arvinda,et al.  RETRACTED ARTICLE: Glioma grading: sensitivity, specificity, positive and negative predictive values of diffusion and perfusion imaging , 2009, Journal of Neuro-Oncology.

[52]  M. Hartmann,et al.  Restricted diffusion within ring enhancement is not pathognomonic for brain abscess. , 2001, AJNR. American journal of neuroradiology.

[53]  Glyn Johnson,et al.  Intracranial mass lesions: dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging. , 2002, Radiology.

[54]  J. Kucharczyk,et al.  Anisotropy in diffusion‐weighted MRI , 1991, Magnetic resonance in medicine.

[55]  D. Prayer,et al.  Brain abscesses after Serratia marcescens infection on a neonatal intensive care unit: differences on serial imaging , 2004, Neuroradiology.

[56]  E. Hattingen,et al.  Postictal spectroscopy and imaging findings mimicking brain tumor recurrence , 2006, Journal of magnetic resonance imaging : JMRI.

[57]  B. Scheithauer,et al.  The 2007 WHO classification of tumours of the central nervous system , 2007, Acta Neuropathologica.

[58]  C. Calli,et al.  Perfusion and diffusion MR imaging in enhancing malignant cerebral tumors. , 2006, European journal of radiology.

[59]  G. Fuller,et al.  The significance of lack of MR contrast enhancement of supratentorial brain tumors in adults: histopathological evaluation of a series. , 1998, Surgical neurology.

[60]  T. Henning,et al.  MRI Findings of Primary CNS Lymphoma in 26 Immunocompetent Patients , 2010, Korean journal of radiology.

[61]  A. Olivi,et al.  Prognostic significance of contrast-enhancing anaplastic astrocytomas in adults. , 2010, Journal of neurosurgery.

[62]  B. D. Ward,et al.  Characterization of a first-pass gradient-echo spin-echo method to predict brain tumor grade and angiogenesis. , 2004, AJNR. American journal of neuroradiology.

[63]  M E Moseley,et al.  Diffusion-weighted MR imaging of the brain: value of differentiating between extraaxial cysts and epidermoid tumors. , 1990, AJR. American journal of roentgenology.

[64]  M. Hartmann,et al.  Differentiating primary central nervous system lymphoma from glioma in humans using localised proton magnetic resonance spectroscopy , 2003, Neuroscience Letters.

[65]  A. Alexander,et al.  Diffusion tensor imaging of cerebral white matter: a pictorial review of physics, fiber tract anatomy, and tumor imaging patterns. , 2004, AJNR. American journal of neuroradiology.

[66]  D. Mikulis,et al.  Diagnostic value of peritumoral minimum apparent diffusion coefficient for differentiation of glioblastoma multiforme from solitary metastatic lesions. , 2011, AJR. American journal of roentgenology.

[67]  H. Lanfermann,et al.  Clinical application of proton magnetic resonance spectroscopy in the diagnosis of intracranial mass lesions , 2002, Neuroradiology.

[68]  C Tanaka,et al.  Discrimination of brain abscess from necrotic or cystic tumors by diffusion-weighted echo planar imaging. , 1996, Magnetic resonance imaging.

[69]  K. Hamacher,et al.  O-(2-[18F]fluorethyl)-L-tyrosine PET in the clinical evaluation of primary brain tumours , 2005, European Journal of Nuclear Medicine and Molecular Imaging.

[70]  J. Petrella,et al.  MR perfusion imaging of the brain: techniques and applications. , 2000, AJR. American journal of roentgenology.

[71]  G B Matson,et al.  Human brain infarction: proton MR spectroscopy. , 1992, Radiology.

[72]  S. Price The role of advanced MR imaging in understanding brain tumour pathology , 2007, British journal of neurosurgery.

[73]  Douglas C. Miller,et al.  Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. , 2008, Radiology.

[74]  C. Good,et al.  Brain surface reformatted images for fast and easy localization of perirolandic lesions. , 2005, Journal of neurosurgery.

[75]  H. Rusinek,et al.  MR spectroscopy indicates diffuse multiple sclerosis activity during remission , 2009, Journal of Neurology, Neurosurgery & Psychiatry.

[76]  Heinrich Lanfermann,et al.  Stereotactic Biopsy in Gliomas Guided by 3-Tesla 1H-Chemical-Shift Imaging of Choline , 2008, Stereotactic and Functional Neurosurgery.

[77]  C. Stippich Prächirurgische funktionelle Magnetresonanztomographie , 2010, Der Radiologe.

[78]  Achim Gass,et al.  Diffusion-weighted and perfusion MRI demonstrates parenchymal changes in complex partial status epilepticus. , 2005, Brain : a journal of neurology.

[79]  C. Elger,et al.  Dysembryoplastic neuroepithelial tumors: MR and CT evaluation. , 1996, AJNR. American journal of neuroradiology.

[80]  H. Shimizu,et al.  Correlation between choline level measured by proton MR spectroscopy and Ki-67 labeling index in gliomas. , 2000, AJNR. American journal of neuroradiology.

[81]  G. Fuller,et al.  Magnetic Resonance Imaging Features of Pilocytic Astrocytoma of the Brain Mimicking High-Grade Gliomas , 2010, Journal of computer assisted tomography.

[82]  J. Schramm,et al.  Gangliogliomas: clinical, radiological, and histopathological findings in 51 patients. , 1994, Journal of neurology, neurosurgery, and psychiatry.

[83]  J. Frahm,et al.  Absolute concentrations of metabolites in the adult human brain in vivo: quantification of localized proton MR spectra. , 1993, Radiology.

[84]  R. Kreis Issues of spectral quality in clinical 1H‐magnetic resonance spectroscopy and a gallery of artifacts , 2004, NMR in biomedicine.

[85]  James M Provenzale,et al.  Lymphomas and high-grade astrocytomas: comparison of water diffusibility and histologic characteristics. , 2002, Radiology.

[86]  J. Masdeu,et al.  Open-ring imaging sign , 2000, Neurology.

[87]  H. Lanfermann,et al.  DIAGNOSTIC VALUE OF PROTON MAGNETIC RESONANCE SPECTROSCOPY IN THE NONINVASIVE GRADING OF SOLID GLIOMAS: COMPARISON OF MAXIMUM AND MEAN CHOLINE VALUES , 2009, Neurosurgery.

[88]  G. Sutherland,et al.  Mobile lipid accumulation in necrotic tissue of high grade astrocytomas. , 1996, Anticancer research.

[89]  A. Traboulsee,et al.  The role of MRI in the diagnosis of multiple sclerosis. , 2006, Advances in neurology.

[90]  R M Weisskoff,et al.  Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. , 2006, AJNR. American journal of neuroradiology.