Detection of correlated hidden factors from single cell transcriptomes using Iteratively Adjusted-SVA (IA-SVA)

[1]  Carlo Colantuoni,et al.  Decomposing cell identity for transfer learning across cellular measurements, platforms, tissues, and species , 2018, bioRxiv.

[2]  S. Dudoit,et al.  A general and flexible method for signal extraction from single-cell RNA-seq data , 2018, Nature Communications.

[3]  M. Newton,et al.  SCnorm: robust normalization of single-cell RNA-seq data , 2017, Nature Methods.

[4]  P. Robson,et al.  CellView: Interactive exploration of high dimensional single cell RNA-seq data , 2017, bioRxiv.

[5]  Duygu Ucar,et al.  Genomics of Islet (Dys)function and Type 2 Diabetes. , 2017, Trends in genetics : TIG.

[6]  N. Hacohen,et al.  Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors , 2017, Science.

[7]  J. George,et al.  Single-cell transcriptomes identify human islet cell signatures and reveal cell-type–specific expression changes in type 2 diabetes , 2017, Genome research.

[8]  S. Weissman,et al.  Detecting heterogeneity in single-cell RNA-Seq data by non-negative matrix factorization , 2017, PeerJ.

[9]  David A. Knowles,et al.  Batch effects and the effective design of single-cell gene expression studies , 2016, Scientific Reports.

[10]  A. Murphy,et al.  RNA Sequencing of Single Human Islet Cells Reveals Type 2 Diabetes Genes. , 2016, Cell metabolism.

[11]  Davis J. McCarthy,et al.  A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor , 2016, F1000Research.

[12]  J. Schug,et al.  Single-Cell Transcriptomics of the Human Endocrine Pancreas , 2016, Diabetes.

[13]  Greg Finak,et al.  The contribution of cell cycle to heterogeneity in single-cell RNA-seq data , 2016, Nature Biotechnology.

[14]  Hsin C. Lin,et al.  Use of the Fluidigm C1 platform for RNA sequencing of single mouse pancreatic islet cells , 2016, Proceedings of the National Academy of Sciences.

[15]  Aleksandra A. Kolodziejczyk,et al.  Classification of low quality cells from single-cell RNA-seq data , 2016, Genome Biology.

[16]  Valentina Proserpio,et al.  Single-cell technologies are revolutionizing the approach to rare cells , 2015, Immunology and cell biology.

[17]  Minoru Kanehisa,et al.  KEGG as a reference resource for gene and protein annotation , 2015, Nucleic Acids Res..

[18]  Monika S. Kowalczyk,et al.  Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells , 2015, Genome research.

[19]  Mingxiang Teng,et al.  On the widespread and critical impact of systematic bias and batch effects in single-cell RNA-Seq data , 2015 .

[20]  A. Gelman,et al.  Beyond subjective and objective in statistics , 2015, 1508.05453.

[21]  S. Quake,et al.  A survey of human brain transcriptome diversity at the single cell level , 2015, Proceedings of the National Academy of Sciences.

[22]  Evan Z. Macosko,et al.  Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets , 2015, Cell.

[23]  S. Teichmann,et al.  Computational and analytical challenges in single-cell transcriptomics , 2015, Nature Reviews Genetics.

[24]  Fabian J Theis,et al.  Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells , 2015, Nature Biotechnology.

[25]  Juancarlos Chan,et al.  Gene Ontology Consortium: going forward , 2014, Nucleic Acids Res..

[26]  Alyssa C. Frazee,et al.  Polyester: Simulating RNA-Seq Datasets With Differential Transcript Expression , 2014, bioRxiv.

[27]  S. Dudoit,et al.  Normalization of RNA-seq data using factor analysis of control genes or samples , 2014, Nature Biotechnology.

[28]  J. Leek svaseq: removing batch effects and other unwanted noise from sequencing data , 2014, bioRxiv.

[29]  Shawn M. Gillespie,et al.  Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma , 2014, Science.

[30]  Laurens van der Maaten,et al.  Accelerating t-SNE using tree-based algorithms , 2014, J. Mach. Learn. Res..

[31]  Johann A. Gagnon-Bartsch,et al.  Using control genes to correct for unwanted variation in microarray data. , 2012, Biostatistics.

[32]  Andrew E. Teschendorff,et al.  Independent surrogate variable analysis to deconvolve confounding factors in large-scale microarray profiling studies , 2011, Bioinform..

[33]  Jeffrey T Leek,et al.  A general framework for multiple testing dependence , 2008, Proceedings of the National Academy of Sciences.

[34]  John D. Storey,et al.  Capturing Heterogeneity in Gene Expression Studies by Surrogate Variable Analysis , 2007, PLoS genetics.

[35]  James Maurer,et al.  Going Forward , 2007, ACM Queue.

[36]  A. Buja,et al.  Remarks on Parallel Analysis. , 1992, Multivariate behavioral research.