Dense Volume-to-Volume Vascular Boundary Detection

In this work, we tackle the important problem of dense 3D volume labeling in medical imaging. We start by introducing HED-3D, a 3D extension of the state-of-the-art 2D edge detector (HED). Next, we develop a novel 3D-Convolutional Neural Network (CNN) architecture, I2I-3D, that predicts boundary location in volumetric data. Our fine-to-fine, deeply supervised framework addresses three critical issues to 3D boundary detection: (1) efficient, holistic, end-to-end volumetric label training and prediction (2) precise voxel-level prediction to capture fine scale structures prevalent in medical data and (3) directed multi-scale, multi-level feature learning. We evaluate our approaches on a dataset consisting of 93 medical image volumes with a wide variety of anatomical regions and vascular structures. We show that our deep learning approaches out-perform the current state-of-the-art in 3D vascular boundary detection (structured forests 3D), by a large margin, as well as HED applied to slices. Prediction takes about one minute on a typical \(512\,\times \,512\,\times \,512\) volume, when using GPU.

[1]  Trevor Darrell,et al.  Caffe: Convolutional Architecture for Fast Feature Embedding , 2014, ACM Multimedia.

[2]  Zhuowen Tu,et al.  Deeply-Supervised Nets , 2014, AISTATS.

[3]  Charless C. Fowlkes,et al.  Contour Detection and Hierarchical Image Segmentation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Dorin Comaniciu,et al.  3D Deep Learning for Efficient and Robust Landmark Detection in Volumetric Data , 2015, MICCAI.

[5]  Andrew Zisserman,et al.  Return of the Devil in the Details: Delving Deep into Convolutional Nets , 2014, BMVC.

[6]  Jitendra Malik,et al.  Learning to detect natural image boundaries using local brightness, color, and texture cues , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Zhuowen Tu,et al.  Structural Edge Detection for Cardiovascular Modeling , 2015, MICCAI.

[8]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[9]  C. Lawrence Zitnick,et al.  Fast Edge Detection Using Structured Forests , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[11]  Jitendra Malik,et al.  Hypercolumns for object segmentation and fine-grained localization , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[12]  Ronald M. Summers,et al.  DeepOrgan: Multi-level Deep Convolutional Networks for Automated Pancreas Segmentation , 2015, MICCAI.