Linearized alternating direction method of multipliers with Gaussian back substitution for separable convex programming

Recently, we have proposed combining the alternating direction method of multipliers (ADMM) with a Gaussian back substitution procedure for solving the convex minimization model with linear constraints and a general separable objective function, i.e., the objective function is the sum of many functions without coupled variables. In this paper, we further study this topic and show that the decomposed subproblems in the ADMM procedure can be substantially alleviated by linearizing the involved quadratic terms arising from the augmented Lagrangian penalty. When the resolvent operators of the separable functions in the objective have closed-form representations, embedding the linearization into the ADMM subproblems becomes necessary to yield easy subproblems with closed-form solutions. We thus show theoretically that the blend of ADMM, Gaussian back substitution and linearization works effectively for the separable convex minimization model under consideration.

[1]  Xiaoming Yuan,et al.  A splitting method for separable convex programming , 2015 .

[2]  Jie Sun,et al.  An alternating direction method for solving convex nonlinear semidefinite programming problems , 2013 .

[3]  Xiaoming Yuan,et al.  Alternating Direction Method for Covariance Selection Models , 2011, Journal of Scientific Computing.

[4]  Bingsheng He,et al.  Linearized Alternating Direction Method with Gaussian Back Substitution for Separable Convex Programming , 2011 .

[5]  Bingsheng He,et al.  On the O(1/n) Convergence Rate of the Douglas-Rachford Alternating Direction Method , 2012, SIAM J. Numer. Anal..

[6]  Xiaoming Yuan,et al.  Matrix completion via an alternating direction method , 2012 .

[7]  Raymond H. Chan,et al.  Alternating Direction Method for Image Inpainting in Wavelet Domains , 2011, SIAM J. Imaging Sci..

[8]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[9]  Bingsheng He,et al.  Solving Large-Scale Least Squares Semidefinite Programming by Alternating Direction Methods , 2011, SIAM J. Matrix Anal. Appl..

[10]  Stanley Osher,et al.  A Unified Primal-Dual Algorithm Framework Based on Bregman Iteration , 2010, J. Sci. Comput..

[11]  Xiaoming Yuan,et al.  Recovering Low-Rank and Sparse Components of Matrices from Incomplete and Noisy Observations , 2011, SIAM J. Optim..

[12]  Su Zhang,et al.  A modified alternating direction method for convex quadratically constrained quadratic semidefinite programs , 2010, Eur. J. Oper. Res..

[13]  Wotao Yin,et al.  Alternating direction augmented Lagrangian methods for semidefinite programming , 2010, Math. Program. Comput..

[14]  Michael K. Ng,et al.  Solving Constrained Total-variation Image Restoration and Reconstruction Problems via Alternating Direction Methods , 2010, SIAM J. Sci. Comput..

[15]  Xavier Bresson,et al.  Bregmanized Nonlocal Regularization for Deconvolution and Sparse Reconstruction , 2010, SIAM J. Imaging Sci..

[16]  Gabriele Steidl,et al.  Deblurring Poissonian images by split Bregman techniques , 2010, J. Vis. Commun. Image Represent..

[17]  R. Tibshirani,et al.  Sparsity and smoothness via the fused lasso , 2005 .

[18]  Bingsheng He,et al.  A new inexact alternating directions method for monotone variational inequalities , 2002, Math. Program..

[19]  Nirmal K. Bose,et al.  High‐resolution image reconstruction with multisensors , 1998, Int. J. Imaging Syst. Technol..

[20]  Masao Fukushima,et al.  The primal douglas-rachford splitting algorithm for a class of monotone mappings with application to the traffic equilibrium problem , 1996, Math. Program..

[21]  Andrzej Ruszczynski,et al.  Parallel decomposition of multistage stochastic programming problems , 1993, Math. Program..

[22]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[23]  Masao Fukushima,et al.  Application of the alternating direction method of multipliers to separable convex programming problems , 1992, Comput. Optim. Appl..

[24]  R. Glowinski,et al.  Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .

[25]  R. Glowinski,et al.  Numerical Methods for Nonlinear Variational Problems , 1985 .

[26]  M. Fortin,et al.  Chapter V Application to the Solution Of Strongly Nonlinear Second-Order Boundary-Value Problems , 1983 .

[27]  M. Fortin,et al.  Augmented Lagrangian methods : applications to the numerical solution of boundary-value problems , 1983 .

[28]  D. Gabay Applications of the method of multipliers to variational inequalities , 1983 .

[29]  P. Lions,et al.  Splitting Algorithms for the Sum of Two Nonlinear Operators , 1979 .

[30]  Gregory B. Passty Ergodic convergence to a zero of the sum of monotone operators in Hilbert space , 1979 .

[31]  R. Glowinski,et al.  Finite element approximation and iterative solution of a class of mildly non-linear elliptic equations , 1978 .

[32]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[33]  M. Hestenes Multiplier and gradient methods , 1969 .

[34]  M. Powell A method for nonlinear constraints in minimization problems , 1969 .

[35]  H. H. Rachford,et al.  On the numerical solution of heat conduction problems in two and three space variables , 1956 .