Independent Component Analysis

In the independent component (IC) model it is assumed that the p-variate random vector x = Ωz + μ, where μ is a location vector, Ω is a full rank p× p mixing matrix, and z is a p-variate vector with mutually independent components. In the independent component analysis (ICA) the aim is to find an estimate of an unmixing matrix Γ such that Γx has independent components. We talk about standardization of the IC model, and on the basis of n independent copies of x, we consider one-sample testing and estimation procedures for Ω (or Γ). We also discuss comparison of different unmixing matrix estimates.

[1]  Meetings , 1891, Bristol Medico-Chirurgical Journal (1883).

[2]  O. L. Frost,et al.  An algorithm for linearly constrained adaptive array processing , 1972 .

[3]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[4]  Jont B. Allen,et al.  Image method for efficiently simulating small‐room acoustics , 1976 .

[5]  L. J. Griffiths,et al.  An alternative approach to linearly constrained adaptive beamforming , 1982 .

[6]  R. Howe Very Basic Lie Theory , 1983 .

[7]  Gene H. Golub,et al.  Matrix computations , 1983 .

[8]  Shun-ichi Amari,et al.  Differential-geometrical methods in statistics , 1985 .

[9]  J. Flanagan,et al.  Computer‐steered microphone arrays for sound transduction in large rooms , 1985 .

[10]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[11]  Juro Ohga,et al.  Adaptive microphone-array system for noise reduction , 1986, IEEE Trans. Acoust. Speech Signal Process..

[12]  B. Kosco Differential Hebbian learning , 1987 .

[13]  P. McCullagh Tensor Methods in Statistics , 1987 .

[14]  Jean-Francois Cardoso,et al.  Source separation using higher order moments , 1989, International Conference on Acoustics, Speech, and Signal Processing,.

[15]  M. Marcus,et al.  A Survey of Matrix Theory and Matrix Inequalities , 1965 .

[16]  R. Liu,et al.  AMUSE: a new blind identification algorithm , 1990, IEEE International Symposium on Circuits and Systems.

[17]  Jean-Francois Cardoso,et al.  Eigen-structure of the fourth-order cumulant tensor with application to the blind source separation problem , 1990, International Conference on Acoustics, Speech, and Signal Processing.

[18]  Christian Jutten,et al.  Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture , 1991, Signal Process..

[19]  J J Hopfield,et al.  Olfactory computation and object perception. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[21]  Tetsunori Kobayashi,et al.  ASJ continuous speech corpus for research , 1992 .

[22]  A. Bunse-Gerstner,et al.  Numerical Methods for Simultaneous Diagonalization , 1993, SIAM J. Matrix Anal. Appl..

[23]  J. Cardoso,et al.  Blind beamforming for non-gaussian signals , 1993 .

[24]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[25]  Schuster,et al.  Separation of a mixture of independent signals using time delayed correlations. , 1994, Physical review letters.

[26]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[27]  Andrzej Cichocki,et al.  Robust learning algorithm for blind separation of signals , 1994 .

[28]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[29]  Kiyotoshi Matsuoka,et al.  A neural net for blind separation of nonstationary signals , 1995, Neural Networks.

[30]  Tzyy-Ping Jung,et al.  Independent Component Analysis of Electroencephalographic Data , 1995, NIPS.

[31]  Andrzej Cichocki,et al.  A New Learning Algorithm for Blind Signal Separation , 1995, NIPS.

[32]  Antoine Souloumiac,et al.  Jacobi Angles for Simultaneous Diagonalization , 1996, SIAM J. Matrix Anal. Appl..

[33]  Barak A. Pearlmutter,et al.  Maximum Likelihood Blind Source Separation: A Context-Sensitive Generalization of ICA , 1996, NIPS.

[34]  S. Amari A new learning algorightm for blind signal separation , 1996, NIPS 1996.

[35]  Lizhong Wu,et al.  Multi-effect Decompositions for Financial Data Modeling , 1996, NIPS.

[36]  F. Craik,et al.  Novelty and familiarity activations in PET studies of memory encoding and retrieval. , 1996, Cerebral cortex.

[37]  Gary W. Elko,et al.  Microphone array systems for hands-free telecommunication , 1996, Speech Commun..

[38]  A. Iserles,et al.  Runge-Kutta methods for orthogonal and isospectral flows , 1996 .

[39]  Dinh-Tuan Pham,et al.  Blind separation of instantaneous mixture of sources via an independent component analysis , 1996, IEEE Trans. Signal Process..

[40]  Jean-François Cardoso,et al.  Equivariant adaptive source separation , 1996, IEEE Trans. Signal Process..

[41]  Juha Karhunen,et al.  Neural approaches to independent component analysis and source separation , 1996, ESANN.

[42]  U. Helmke,et al.  Optimization and Dynamical Systems , 1994, Proceedings of the IEEE.

[43]  Andrzej Cichocki,et al.  Robust neural networks with on-line learning for blind identification and blind separation of sources , 1996 .

[44]  Kazuya Takeda,et al.  Extracting speech features from human speech like noise , 1996, Proceeding of Fourth International Conference on Spoken Language Processing. ICSLP '96.

[45]  T J Sejnowski,et al.  Learning the higher-order structure of a natural sound. , 1996, Network.

[46]  Jerry Bauck,et al.  Generalized transaural stereo and applications , 1996 .

[47]  Jitendra K. Tugnait,et al.  Identification and deconvolution of multichannel linear non-Gaussian processes using higher order statistics and inverse filter criteria , 1997, IEEE Trans. Signal Process..

[48]  Aapo Hyvärinen,et al.  A Fast Fixed-Point Algorithm for Independent Component Analysis , 1997, Neural Computation.

[49]  Shun-ichi Amari,et al.  Blind source separation-semiparametric statistical approach , 1997, IEEE Trans. Signal Process..

[50]  Eric Moulines,et al.  A blind source separation technique using second-order statistics , 1997, IEEE Trans. Signal Process..

[51]  K. Furuya,et al.  Two-channel blind deconvolution of nonminimum phase FIR systems , 1997 .

[52]  Tzyy-Ping Jung,et al.  Extended ICA Removes Artifacts from Electroencephalographic Recordings , 1997, NIPS.

[53]  S.C. Douglas,et al.  Multichannel blind deconvolution and equalization using the natural gradient , 1997, First IEEE Signal Processing Workshop on Signal Processing Advances in Wireless Communications.

[54]  D. Manoach,et al.  Prefrontal cortex fMRI signal changes are correlated with working memory load , 1997, Neuroreport.

[55]  A. Bountis Dynamical Systems And Numerical Analysis , 1997, IEEE Computational Science and Engineering.

[56]  Maurizio Omologo,et al.  Microphone array based speech recognition with different talker-array positions , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[57]  L. Lathauwer,et al.  Signal Processing based on Multilinear Algebra , 1997 .

[58]  S Makeig,et al.  Blind separation of auditory event-related brain responses into independent components. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[59]  J. Cardoso Infomax and maximum likelihood for blind source separation , 1997, IEEE Signal Processing Letters.

[60]  Yujiro Inouye,et al.  Cumulant-based blind identification of linear multi-input-multi-output systems driven by colored inputs , 1997, IEEE Trans. Signal Process..

[61]  Andrzej Cichocki,et al.  Stability Analysis of Learning Algorithms for Blind Source Separation , 1997, Neural Networks.

[62]  P. Mitra,et al.  The nature of spatiotemporal changes in cerebral hemodynamics as manifested in functional magnetic resonance imaging , 1997, Magnetic resonance in medicine.

[63]  Richard S. J. Frackowiak,et al.  Functional localization of the system for visuospatial attention using positron emission tomography. , 1997, Brain : a journal of neurology.

[64]  Te-Won Lee,et al.  Independent Component Analysis , 1998, Springer US.

[65]  P. Comon,et al.  Blind separation of discrete sources , 1998, IEEE Signal Processing Letters.

[66]  Shun-ichi Amari,et al.  Adaptive blind signal processing-neural network approaches , 1998, Proc. IEEE.

[67]  Shun-ichi Amari,et al.  Natural Gradient Works Efficiently in Learning , 1998, Neural Computation.

[68]  Tzyy-Ping Jung,et al.  Independent Component Analysis of Electroencephalographic and Event-Related Potential Data , 1998 .

[69]  Jean-François Cardoso,et al.  Multidimensional independent component analysis , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[70]  Alexander D. Poularikas,et al.  The handbook of formulas and tables for signal processing , 1998 .

[71]  Tzyy-Ping Jung,et al.  Analyzing and Visualizing Single-Trial Event-Related Potentials , 1998, NIPS.

[72]  N. Murata,et al.  An On-line Algorithm for Blind Source Separation on Speech Signals , 1998 .

[73]  Karl J. Friston Modes or models: a critique on independent component analysis for fMRI , 1998, Trends in Cognitive Sciences.

[74]  Mark A. Girolami,et al.  An Alternative Perspective on Adaptive Independent Component Analysis Algorithms , 1998, Neural Computation.

[75]  Paul A. Viola,et al.  Restructuring Sparse High Dimensional Data for Effective Retrieval , 1998, NIPS.

[76]  Paris Smaragdis,et al.  Blind separation of convolved mixtures in the frequency domain , 1998, Neurocomputing.

[77]  Terrence J. Sejnowski,et al.  Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Sub-Gaussian and Super-Gaussian Sources , 1999, Neural Comput..

[78]  Hagai Attias,et al.  Independent Factor Analysis , 1999, Neural Computation.

[79]  Liqing Zhang,et al.  Natural gradient algorithm for blind separation of overdetermined mixture with additive noise , 1999, IEEE Signal Processing Letters.

[80]  Aapo Hyvärinen,et al.  Survey on Independent Component Analysis , 1999 .

[81]  Terrence J. Sejnowski,et al.  Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Subgaussian and Supergaussian Sources , 1999, Neural Computation.

[82]  Shun-ichi AMARIyy,et al.  NATURAL GRADIENT LEARNING WITH A NONHOLONOMIC CONSTRAINT FOR BLIND DECONVOLUTION OF MULTIPLE CHANNELS , 1999 .

[83]  T. Sejnowski,et al.  Removing electroencephalographic artifacts by blind source separation. , 2000, Psychophysiology.

[84]  Seungjin Choi,et al.  Blind separation of nonstationary and temporally correlated sources from noisy mixtures , 2000, Neural Networks for Signal Processing X. Proceedings of the 2000 IEEE Signal Processing Society Workshop (Cat. No.00TH8501).

[85]  Terrence J. Sejnowski,et al.  Learning Overcomplete Representations , 2000, Neural Computation.

[86]  Andrzej Cichocki,et al.  Flexible Independent Component Analysis , 2000, J. VLSI Signal Process..

[87]  S. Haykin Unsupervised adaptive filtering, vol. 1: Blind source separation , 2000 .

[88]  Lucas C. Parra,et al.  Convolutive blind separation of non-stationary sources , 2000, IEEE Trans. Speech Audio Process..

[89]  Zhi Ding,et al.  A matrix-pencil approach to blind separation of colored nonstationary signals , 2000, IEEE Trans. Signal Process..

[90]  Aapo Hyvärinen,et al.  Emergence of Phase- and Shift-Invariant Features by Decomposition of Natural Images into Independent Feature Subspaces , 2000, Neural Computation.

[91]  A. Cichocki,et al.  Blind separation of nonstationary sources in noisy mixtures , 2000 .

[92]  Dinh Tuan Pham,et al.  Joint Approximate Diagonalization of Positive Definite Hermitian Matrices , 2000, SIAM J. Matrix Anal. Appl..

[93]  Dinh-Tuan Pham,et al.  Blind separation of instantaneous mixtures of nonstationary sources , 2001, IEEE Trans. Signal Process..

[94]  Max Welling,et al.  A Constrained EM Algorithm for Independent Component Analysis , 2001, Neural Computation.

[95]  Kiyohiro Shikano,et al.  Blind source separation for speech based on fast-convergence algorithm with ICA and beamforming , 2001, INTERSPEECH.

[96]  E. Oja,et al.  Independent Component Analysis , 2013 .

[97]  Andreas Ziehe,et al.  An approach to blind source separation based on temporal structure of speech signals , 2001, Neurocomputing.

[98]  Arieh Iserles,et al.  On Cayley-Transform Methods for the Discretization of Lie-Group Equations , 2001, Found. Comput. Math..

[99]  T. Sejnowski,et al.  Analysis and visualization of single‐trial event‐related potentials , 2001, Human brain mapping.

[100]  J. W. Miskin,et al.  Ensemble Learning for Blind Source Separation , 2001 .

[101]  Eric Moreau,et al.  A generalization of joint-diagonalization criteria for source separation , 2001, IEEE Trans. Signal Process..

[102]  K. Shikano,et al.  Sound Reproduction System Including Adaptive Compensation of Temperature Fluctuation Effect for Broad-Band Sound Control , 2002, IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences.

[103]  Wolfram Liebermeister,et al.  Linear modes of gene expression determined by independent component analysis , 2002, Bioinform..

[104]  Andrzej Cichocki,et al.  Adaptive Blind Signal and Image Processing - Learning Algorithms and Applications , 2002 .

[105]  James V. Stone,et al.  Spatiotemporal Independent Component Analysis of Event-Related fMRI Data Using Skewed Probability Density Functions , 2002, NeuroImage.

[106]  Arieh Iserles,et al.  On the Foundations of Computational Mathematics , 2001 .

[107]  K. Matsuoka,et al.  Minimal distortion principle for blind source separation , 2002, Proceedings of the 41st SICE Annual Conference. SICE 2002..

[108]  Andrzej Cichocki,et al.  Second Order Nonstationary Source Separation , 2002, J. VLSI Signal Process..

[109]  Seungjin Choi,et al.  Adaptive Differential Decorrelation: A Natural Gradient Algorithm , 2002, ICANN.

[110]  Arie Yeredor,et al.  Non-orthogonal joint diagonalization in the least-squares sense with application in blind source separation , 2002, IEEE Trans. Signal Process..

[111]  Mark D. Plumbley Algorithms for nonnegative independent component analysis , 2003, IEEE Trans. Neural Networks.

[112]  Kiyohiro Shikano,et al.  Blind separation and deconvolution of MIMO-FIR system with colored sound inputs using SIMO-model-based ICA , 2003, IEEE Workshop on Statistical Signal Processing, 2003.

[113]  Kiyohiro Shikano,et al.  High-fidelity blind separation for convolutive mixture of acoustic signals using SIMO-model-based independent component analysis , 2003, Seventh International Symposium on Signal Processing and Its Applications, 2003. Proceedings..

[114]  K. Shikano,et al.  Blind Source Separation of Acoustic Signals Based on Multistage ICA Combining Frequency-Domain ICA and Time-Domain ICA , 2003, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[115]  Seungjin Choi,et al.  Differential learning and random walk model , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[116]  K. Shikano,et al.  SIMO-Model-Based ICA with Infomax Constraint for High-Fidelity Blind Source Separation , 2003 .

[117]  Kiyohiro Shikano,et al.  SIMO-Model-Based Independent Component Analysis for High-Fidelity Blind Separation of Acoustic Signals , 2003 .

[118]  Masami Kobayashi,et al.  Telexistence cockpit for humanoid robot control , 2003, Adv. Robotics.

[119]  Kiyohiro Shikano,et al.  Blind separation and deconvolution of MIMO system driven by colored inputs using SIMO-model-based ICA with information-geometric learning , 2003, 2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718).

[120]  Kiyohiro Shikano,et al.  Blind Separation and Deconvolution of Convolutive Speech Mixture Using SIMO-Model-Based ICA with Information-Geometric Learning , 2003 .

[121]  Kiyohiro Shikano,et al.  BLIND SEPARATION AND DECONVOLUTION FOR REAL CONVOLUTIVE MIXTURE OF TEMPORALLY CORRELATED ACOUSTIC SIGNALS USING SIMO-MODEL-BASED ICA , 2003 .

[122]  Kiyohiro Shikano,et al.  SIMO-Model-Based ICA with Information-Geometric Learning for High-Fidelity Blind Source Separation , 2003 .

[123]  Tatsuya Hirahara,et al.  A steerable dummy head that tracks three-dimensional head movement: TeleHead , 2003 .

[124]  Michael I. Jordan,et al.  Kernel independent component analysis , 2003 .

[125]  Kiyohiro Shikano,et al.  High-Fidelity Blind Separation of Acoustic Signals using SIMO-Model-based ICA with Information-Geometric Learning , 2003 .

[126]  Tsuyoki Nishikawa,et al.  Blind source separation based on binaural ICA , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[127]  Kiyohiro Shikano,et al.  Stable Learning Algorithm for Blind Separation of Temporally Correlated Acoustic Signals Combining Multistage ICA and Linear Prediction , 2003, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[128]  Kiyohiro Shikano,et al.  Iterative Inverse Filter Relaxation Algorithm for Adaptation to Acoustic Fluctuation in Sound Reproduction System , 2003 .

[129]  Kiyohiro Shikano,et al.  Parallel structured independent component analysis for SIMO-model-based blind separation and deconvolution of convolutive speech mixture , 2003, Proceedings of the International Joint Conference on Neural Networks, 2003..

[130]  Kiyohiro Shikano,et al.  EVALUATION OF BLIND SEPARATION AND DECONVOLUTION FOR CONVOLUTIVE SPEECH MIXTURE USING SIMO-MODEL-BASED ICA , 2003 .

[131]  A. Ziehe,et al.  A LINEAR LEAST-SQUARES ALGORITHM FOR JOINT DIAGONALIZATION , 2003 .

[132]  Michael I. Jordan,et al.  Beyond Independent Components: Trees and Clusters , 2003, J. Mach. Learn. Res..

[133]  Kiyohiro Shikano,et al.  Evaluation of blind separation and deconvolution for binaural-sound mixtures using SIMO-model-based ICA , 2004, 2004 12th European Signal Processing Conference.

[134]  Kiyohiro Shikano,et al.  SIMO-Model-Based Blind Acoustic Signal Separation: Concept and Its Application , 2004 .

[135]  James V. Stone Independent Component Analysis: A Tutorial Introduction , 2007 .

[136]  Kiyohiro Shikano,et al.  Blind separation of binaural sound mixtures using SIMO-model-based independent component analysis , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[137]  Saruwatari Hiroshi,et al.  Blind Source Separation Combining SIMO-Model-Based ICA and Binary Mask Processing , 2004 .

[138]  Kiyohiro Shikano,et al.  Multistage SIMO-model-based blind source separation combining frequency-domain ICA and time-domain ICA , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[139]  Hiroshi Sawada,et al.  A robust and precise method for solving the permutation problem of frequency-domain blind source separation , 2004, IEEE Transactions on Speech and Audio Processing.

[140]  K. Shikano,et al.  Comparison between SIMO-ICA with least squares criterion and SIMO-ICA with information-geometric learning , 2004 .

[141]  Kiyohiro Shikano,et al.  Blind separation of binaural sound mixtures using SIMO-ICA with self-generator for initial filter , 2005, 2005 13th European Signal Processing Conference.

[142]  Kiyohiro Shikano,et al.  Evaluation of a self-generator method for initial filters of SIMO-ICA applied to blind separation of binaural sound mixtures , 2005, IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, 2005..

[143]  Kiyohiro Shikano,et al.  Two-Stage Blind Source Separation Using SIMO-ICA and Binary Masking , 2005 .

[144]  Kiyohiro Shikano,et al.  Real-Time Implementation of Two-Stage Blind Source Separation Combining SIMO-ICA and Binary Masking , 2005 .

[145]  Tsuyoki Nishikawa,et al.  Blind source separation combining SIMO-model-based ICA and adaptive beamforming , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[146]  Jacob Benesty,et al.  Optimal step size of the adaptive multichannel LMS algorithm for blind SIMO identification , 2005, IEEE Signal Processing Letters.

[147]  Soo-Young Lee Blind Source Separation and Independent Component Analysis: A Review , 2005 .

[148]  Kiyohiro Shikano,et al.  Blind separation of convolutive speech mixtures using SIMO-model-based ICA and binary mask processing , 2005 .

[149]  Kiyohiro Shikano,et al.  Blind sound scene decomposition for robot audition using SIMO-model-based ICA , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[150]  James V. Stone,et al.  Independent Component Analysis , 2015, Encyclopedia of Biometrics.

[151]  Kiyohiro Shikano,et al.  Two-stage blind source separation based on ICA and binary masking for real-time robot audition system , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[152]  Kiyohiro Shikano,et al.  Evaluation of SIMO Separation Methods for Blind Decomposition of Binaural Mixed Signals , 2005 .

[153]  K. Shikano,et al.  Blind separation and deconvolution of MIMO-FIR system with colored inputs based on SIMO-model-based ICA , 2005, 2005 IEEE Antennas and Propagation Society International Symposium.

[154]  K. Shikano,et al.  Two-stage blind source separation combining SIMO-model-based ICA and adaptive beamforming , 2005, 2005 13th European Signal Processing Conference.

[155]  Kiyohiro Shikano,et al.  Blind Separation and Deconvolution for Convolutive Mixture of Speech Combining SIMO-Model-Based ICA and Multichannel Inverse Filtering , 2003, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[156]  Kiyohiro Shikano,et al.  Blind decomposition of binaural mixed signals using high-convergence algorithm combining SIMO-ICA and DOA estimation , 2005 .

[157]  Robert E. Mahony,et al.  Convergence of the Iterates of Descent Methods for Analytic Cost Functions , 2005, SIAM J. Optim..

[158]  Yuanqing Li,et al.  Blind estimation of channel parameters and source components for EEG signals: a sparse factorization approach , 2006, IEEE Transactions on Neural Networks.

[159]  B. Kosko Differential Hebbian learning , 2008 .

[160]  Pauliina Ilmonen,et al.  Characteristics of multivariate distributions and the invariant coordinate system , 2010 .

[161]  Margaret-Anne D. Storey,et al.  Invited Talk , 2019, ICPC.

[162]  Pauliina Ilmonen,et al.  Semiparametrically efficient inference based on signed ranks in symmetric independent component models , 2011, 1202.5159.

[163]  K. Nordhausen,et al.  On asymptotics of ICA estimators and their performance indices , 2012, 1212.3953.

[164]  P. Olver Nonlinear Systems , 2013 .