Hα Spectroscopy of Galaxies at z > 2: Kinematics and Star Formation

We present near-infrared spectroscopy of Hα emission lines in a sample of 16 star-forming galaxies at redshifts 2.0 < z < 2.6. Our targets are drawn from a large sample of galaxies photometrically selected and spectroscopically confirmed to lie in this redshift range. We have obtained this large sample with an extension of the broadband UnGℛ color criteria used to identify Lyman break galaxies at z ~ 3. The primary selection criterion for IR spectroscopic observation was proximity to a QSO sight line; we therefore expect the galaxies presented here to be representative of the sample as a whole. Six of the galaxies exhibit spatially extended, tilted Hα emission lines; rotation curves for these objects reach mean velocities of ~150 km s-1 at radii of ~6 kpc, without corrections for inclination or any other observational effect. The velocities and radii give a mean dynamical mass of ≥ 4 × 1010 M☉. We have obtained archival Hubble Space Telescope images for two of these galaxies; they are morphologically irregular. One-dimensional velocity dispersions for the 16 galaxies range from ~50 to ~260 km s-1, and in cases in which we have both virial masses implied by the velocity dispersions and dynamical masses derived from the spatially extended emission lines, they are in rough agreement. We compare our kinematic results with similar measurements made at z ~ 3 and find that both the observed rotational velocities and velocity dispersions tend to be larger at z ~ 2 than at z ~ 3. We also calculate star formation rates (SFRs) from the Hα luminosities and compare them with SFRs calculated from the UV continuum luminosity. We find a mean SFRHα of 16 M☉ yr-1 and an average SFRHα/SFRUV ratio of 2.4, without correcting for extinction. We see moderate evidence for an inverse correlation between the UV continuum luminosity and the ratio SFRHα/SFRUV, such as might be observed if the UV-faint galaxies suffered greater extinction. We discuss the effects of dust and star formation history on the SFRs and conclude that extinction is the most likely explanation for the discrepancy between the two SFRs.

[1]  M. Pettini,et al.  Rest-Frame Ultraviolet Spectra of z ∼ 3 Lyman Break Galaxies , 2003, astro-ph/0301230.

[2]  J. Kneib,et al.  Physical properties of two low-luminosity z 1.9 galaxies behind the lensing cluster AC 114 ⋆ , 2002, astro-ph/0210547.

[3]  Reinhard Genzel,et al.  Spatially Resolved Millimeter Interferometry of SMM J02399–0136: A Very Massive Galaxy at z = 2.8 , 2002, astro-ph/0210449.

[4]  C. Steidel,et al.  Galaxies and Intergalactic Matter at Redshift z ~ 3: Overview , 2002, astro-ph/0210314.

[5]  B. Madore,et al.  The Central Mass Distribution in Dwarf and Low Surface Brightness Galaxies , 2002, astro-ph/0210152.

[6]  V. Buat Star Formation and Dust Extinction in Nearby Star Forming and Starburst Galaxies , 2002, astro-ph/0201281.

[7]  S. Maddox,et al.  The Hα luminosity function and star formation rate up to z ∼ 1 ⋆ , 2001, astro-ph/0111390.

[8]  M. Giavalisco,et al.  The Rest-Frame Optical Properties of z ≃ 3 Galaxies , 2001, astro-ph/0107324.

[9]  J. Cuby,et al.  The Rest-Frame Optical Spectra of Lyman Break Galaxies: Star Formation, Extinction, Abundances, and Kinematics , 2001, astro-ph/0102456.

[10]  E. Bell,et al.  A Comparison of Ultraviolet Imaging Telescope Far-Ultraviolet and Hα Star Formation Rates , 2001 .

[11]  C. Leitherer,et al.  Multiwavelength Study of the Starburst Galaxy NGC 7714. II. The Balance between Young, Intermediate-Age, and Old Stars , 2001, astro-ph/0101327.

[12]  Mark Dickinson,et al.  Clustering Segregation with Ultraviolet Luminosity in Lyman Break Galaxies at z~3 and Its Implications , 2000, astro-ph/0012249.

[13]  A. Connolly,et al.  Star Formation in Galaxies between Redshifts of 0.7 and 1.8 , 2000 .

[14]  E. Bell,et al.  A Comparison of UIT Far-Ultraviolet and H alpha Star Formation Rates , 2000, astro-ph/0010340.

[15]  Hubble Space Telescope Observations of He 2-10: Outflows and Young Super-Star Clusters , 2000 .

[16]  H. Kobulnicky,et al.  Near-Infrared Spectroscopy of Two Galaxies at z = 2.3 and z = 2.9: New Probes of Chemical and Dynamical Evolution at High Redshift , 2000, astro-ph/0008242.

[17]  C. C. Steidel,et al.  Multiwavelength Observations of Dusty Star Formation at Low and High Redshift , 2000, astro-ph/0001126.

[18]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[19]  A. Kinney,et al.  Panchromatic Study of Nearby Ultraviolet-bright Starburst Galaxies: Implications for Massive Star Formation and High-Redshift Galaxies , 1999, astro-ph/9910382.

[20]  M. Sullivan,et al.  An ultraviolet-selected galaxy redshift survey -- II. The physical nature of star formation in an enlarged sample , 1999, astro-ph/9910104.

[21]  M. Halpern,et al.  A Search for the submillimetre counterparts to Lyman break galaxies , 1999, astro-ph/9909092.

[22]  M. Giavalisco,et al.  The Ultraviolet Spectrum of MS 1512–cB58: An Insight into Lyman-Break Galaxies , 1999, astro-ph/9908007.

[23]  R. Nichol,et al.  High-Redshift Quasars Found in Sloan Digital Sky Survey Commissioning Data , 1999, astro-ph/0103228.

[24]  C. Blake,et al.  Measurement of the star formation rate from Hα in field galaxies at z=1 , 1998, astro-ph/9808276.

[25]  James E. Larkin,et al.  Design and development of NIRSPEC: a near-infrared echelle spectrograph for the Keck II telescope , 1998, Astronomical Telescopes and Instrumentation.

[26]  R. Hook,et al.  Drizzle: A Method for the Linear Reconstruction of Undersampled Images , 1998, astro-ph/9808087.

[27]  S. White,et al.  The structure and clustering of Lyman-break galaxies , 1998, astro-ph/9807341.

[28]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[29]  C. Leitherer,et al.  Searching for Wolf-Rayet Stars in I Zw 18: the Origin of He II Emission , 1998, astro-ph/9805342.

[30]  M. Malkan,et al.  An Infrared Search for Star-forming Galaxies at z > 2 , 1998, astro-ph/9805157.

[31]  M. Giavalisco,et al.  A Counts-in-Cells Analysis Of Lyman-break Galaxies At Redshift z ~ 3 , 1998, astro-ph/9804236.

[32]  L. Pozzetti,et al.  The Star Formation History of Field Galaxies , 1997, astro-ph/9708220.

[33]  S. White,et al.  The formation of galactic discs , 1997, astro-ph/9707093.

[34]  C. S. Frenk,et al.  The Epoch of Galaxy Formation , 1997, astro-ph/9703111.

[35]  D. Calzetti Reddening and star formation in starburst galaxies , 1996, astro-ph/9610184.

[36]  C. Leitherer,et al.  Hubble Space Telescope Ultraviolet Imaging and Spectroscopy of the Bright Starburst in the Wolf-Rayet Galaxy NGC 4214 , 1996 .

[37]  L. Colina,et al.  The 0.12-2.5 micron Absolute Flux Distribution of the Sun for Comparison With Solar Analog Stars , 1996 .

[38]  M. Giavalisco,et al.  Spectroscopic Confirmation of a Population of Normal Star-forming Galaxies at Redshifts z > 3 , 1996, astro-ph/9602024.

[39]  C. Steidel,et al.  Lyman Limit Imaging of High Redshift Galaxies. III. New Observations of 4 QSO Fields , 1995, astro-ph/9509089.

[40]  Molefe Mokoene,et al.  The Messenger , 1995, Outrageous Fortune.

[41]  James E. Gunn,et al.  Spectrscopic CCD Surveys for Quasars at Large Redshift.IV.Evolution of the Luminosity Function from Quasars Detected by Their Lyman-Alpha Emission , 1995 .

[42]  Harland W. Epps,et al.  THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .

[43]  Y. Pei The Luminosity Function of Quasars , 1995 .

[44]  Donald Hamilton,et al.  Deep imaging of high redshift QSO fields below the Lyman limit. II - Number counts and colors of field galaxies , 1993 .

[45]  E. Feigelson,et al.  PUBLIC SOFTWARE FOR THE ASTRONOMER: AN OVERVIEW , 1992 .

[46]  S. Veilleux,et al.  Spectral Classification of Emission-Line Galaxies , 1986 .

[47]  P. I. Nelson,et al.  Statistical methods for astronomical data with upper limits. I - Univariate distributions , 1985 .

[48]  D. Osterbrock,et al.  Astrophysics of Gaseous Nebulae , 1976 .

[49]  J. Cuby,et al.  Rotation and Masses of Galaxies at z 3.2 , 2003 .

[50]  Anton M. Koekemoer,et al.  HST Dither Handbook , 2002 .

[51]  Henry C. Ferguson,et al.  Accepted for publication in the Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 19/02/01 THE STELLAR POPULATIONS AND EVOLUTION OF LYMAN BREAK GALAXIES 1 , 2001 .

[52]  D. Osterbrock,et al.  Astrophysics of Gaseous Nebulae and Active Galactic Nuclei , 1989 .

[53]  Cambridge,et al.  ∼ 4 and the Evolution of the Uv Luminosity Density at High Redshift , 2022 .