Incorporating the Plant Phenological Trajectory into Mangrove Species Mapping with Dense Time Series Sentinel-2 Imagery and the Google Earth Engine Platform

[1]  Qihao Weng,et al.  Integrating UAV optical imagery and LiDAR data for assessing the spatial relationship between mangrove and inundation across a subtropical estuarine wetland , 2019, ISPRS Journal of Photogrammetry and Remote Sensing.

[2]  Matthew W. Mitchell Bias of the Random Forest Out-of-Bag (OOB) Error for Certain Input Parameters , 2011 .

[3]  Nengcheng Chen,et al.  Long-Term Surface Water Dynamics Analysis Based on Landsat Imagery and the Google Earth Engine Platform: A Case Study in the Middle Yangtze River Basin , 2018, Remote. Sens..

[4]  Cardona Alzate,et al.  Predicción y selección de variables con bosques aleatorios en presencia de variables correlacionadas , 2020 .

[5]  Lin Liu,et al.  Object-Based Mangrove Species Classification Using Unmanned Aerial Vehicle Hyperspectral Images and Digital Surface Models , 2018, Remote. Sens..

[6]  Naoto Yokoya,et al.  Remote Sensing Approaches for Monitoring Mangrove Species, Structure, and Biomass: Opportunities and Challenges , 2019, Remote. Sens..

[7]  Steffen Gebhardt,et al.  Remote Sensing of Mangrove Ecosystems: A Review , 2011, Remote. Sens..

[8]  A. Skidmore,et al.  A post-classifier for mangrove mapping using ecological data , 2006 .

[9]  E. Barbier,et al.  Ethnobiology, socio-economics and management of mangrove forests: A review , 2008 .

[10]  Stuart R. Phinn,et al.  Hyperspectral Data for Mangrove Species Mapping: A Comparison of Pixel-Based and Object-Based Approach , 2011, Remote. Sens..

[11]  D. Alongi Carbon payments for mangrove conservation: ecosystem constraints and uncertainties of sequestration potential , 2011 .

[12]  P. Botosso,et al.  Stem growth and phenology of three subtropical mangrove tree species , 2017, Brazilian Journal of Botany.

[13]  Bingfang Wu,et al.  Land degradation and restoration in the arid and semiarid zones of China: Quantified evidence and implications from satellites , 2018, Land Degradation & Development.

[14]  Mark Huxham,et al.  Evaluating, predicting and mapping belowground carbon stores in Kenyan mangroves , 2017, Global change biology.

[15]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[16]  Mingming Jia,et al.  Monitoring the Invasion of Spartina alterniflora Using Multi-source High-resolution Imagery in the Zhangjiang Estuary, China , 2017, Remote. Sens..

[17]  Paul M. Mather,et al.  An assessment of the effectiveness of decision tree methods for land cover classification , 2003 .

[18]  Zongming Wang,et al.  A New Vegetation Index to Detect Periodically Submerged Mangrove Forest Using Single-Tide Sentinel-2 Imagery , 2019, Remote. Sens..

[19]  P. Gong,et al.  Comparison of IKONOS and QuickBird images for mapping mangrove species on the Caribbean coast of Panama , 2004 .

[20]  P. Gwada,et al.  Leaf phenological traits in the mangrove Kandelia candel (L.) Druce , 2000 .

[21]  U. Mehlig Phenology of the red mangrove, Rhizophora mangle L., in the Caeté Estuary, Pará, equatorial Brazil , 2006 .

[22]  F. Blasco,et al.  RECENT ADVANCES IN MANGROVE STUDIES USING REMOTE SENSING DATA , 1998 .

[23]  Kaishan Song,et al.  Landsat-Based Estimation of Mangrove Forest Loss and Restoration in Guangxi Province, China, Influenced by Human and Natural Factors , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[24]  Peter M. Atkinson,et al.  Spatio-temporal fusion for daily Sentinel-2 images , 2018 .

[25]  P. Atkinson,et al.  Remote sensing of mangrove forest phenology and its environmental drivers , 2018 .

[26]  Mahesh Pal,et al.  Random forest classifier for remote sensing classification , 2005 .

[27]  Mario Chica-Olmo,et al.  An assessment of the effectiveness of a random forest classifier for land-cover classification , 2012 .

[28]  Jesslyn F. Brown,et al.  Measuring phenological variability from satellite imagery , 1994 .

[29]  Kaishan Song,et al.  China's wetlands loss to urban expansion , 2018, Land Degradation & Development.

[30]  X. Irigoien,et al.  Phenology and Growth dynamics of Avicennia marina in the Central Red Sea , 2016, Scientific Reports.

[31]  Le Wang,et al.  Incorporating plant phenological trajectory in exotic saltcedar detection with monthly time series of Landsat imagery , 2016 .

[32]  Jinwei Dong,et al.  Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine. , 2016, Remote sensing of environment.

[33]  Lorenzo Bruzzone,et al.  A Novel Context-Sensitive Semisupervised SVM Classifier Robust to Mislabeled Training Samples , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[34]  J. Kovacs,et al.  An assessment of commonly employed satellite-based remote sensors for mapping mangrove species in Mexico using an NDVI-based classification scheme , 2017, Environmental Monitoring and Assessment.

[35]  Qinghua Guo,et al.  Artificial Mangrove Species Mapping Using Pléiades-1: An Evaluation of Pixel-Based and Object-Based Classifications with Selected Machine Learning Algorithms , 2018, Remote. Sens..

[36]  A. Trigila,et al.  Comparison of Logistic Regression and Random Forests techniques for shallow landslide susceptibility assessment in Giampilieri (NE Sicily, Italy) , 2015 .

[37]  Onisimo Mutanga,et al.  Combining spectral and textural remote sensing variables using random forests: predicting the age of Pinus patula forests in KwaZulu-Natal, South Africa , 2012 .