Accelerated Galaxy Growth and Environmental Quenching in a Protocluster at z = 3.24

We present a multiwavelength study of galaxies around D4UD01, a spectroscopically confirmed protocluster at z = 3.24, to investigate environmental trends. 450 galaxies are selected based on K S band detection with photometric redshifts (photo-z) at 3.0 < z < 3.4, among which ∼12% are classified as quiescent galaxies. The quiescent galaxies are among the most massive and reddest ones in the entire sample. We identify a large photo-z galaxy overdensity in the field, which lies close to the previously spectroscopically confirmed sources of the protocluster. We find that the quiescent galaxies are largely concentrated in the overdense protocluster region with a higher quiescent fraction, showing a sign of environmental quenching. Galaxies in the protocluster are forming faster than their field counterparts as seen in the stellar mass function, suggesting early and accelerated mass assembly in the overdense regions. Although weak evidence of suppressed star formation is found in the protocluster, the statistics are not significant enough to draw a definite conclusion. Our work sheds light on how the formation of massive galaxies is affected in the dense region of a protocluster when the universe was only 2 Gyr old.

[1]  Z. Cai,et al.  A Detailed Study of Massive Galaxies in a Protocluster at z = 3.13 , 2020, The Astrophysical Journal.

[2]  Yen-Ting Lin,et al.  The UV Luminosity Function of Protocluster Galaxies at z ∼ 4: The Bright-end Excess and the Enhanced Star Formation Rate Density , 2020, The Astrophysical Journal.

[3]  K. Shimasaku,et al.  A systematic search for galaxy proto-cluster cores at z ∼ 2 , 2020, Monthly Notices of the Royal Astronomical Society.

[4]  J. Newman,et al.  Large-scale Structures in the CANDELS Fields: The Role of the Environment in Star Formation Activity , 2019, The Astrophysical Journal.

[5]  J. Zavala,et al.  On the Gas Content, Star Formation Efficiency, and Environmental Quenching of Massive Galaxies in Protoclusters at z ≈ 2.0–2.5 , 2019, The Astrophysical Journal.

[6]  A. Cimatti,et al.  Massive and old quiescent galaxies at high redshift , 2019, Astronomy & Astrophysics.

[7]  D. Corre,et al.  Properties of LBGs with [OIII] detection at z ∼ 3.5 , 2019, Astronomy & Astrophysics.

[8]  D. Corre,et al.  Properties of LBGs with [OIII] detection at z > 3: The importance of including nebular emission data in SED fitting , 2019, Proceedings of the International Astronomical Union.

[9]  D. Riechers,et al.  SCUBA-2 observations of candidate starbursting protoclusters selected by Planck and Herschel-SPIRE , 2019, Monthly Notices of the Royal Astronomical Society.

[10]  D. Elbaz,et al.  A dominant population of optically invisible massive galaxies in the early Universe , 2019, Nature.

[11]  O. Fèvre,et al.  How Do Galaxies Trace a Large-scale Structure? A Case Study around a Massive Protocluster at Z = 3.13 , 2019, The Astrophysical Journal.

[12]  A. Fontana,et al.  Passive galaxies in the early Universe: ALMA confirmation ofz∼ 3−5 candidates in the CANDELS GOODS-South field , 2019, Monthly Notices of the Royal Astronomical Society.

[13]  Yen-Ting Lin,et al.  SILVERRUSH. VIII. Spectroscopic Identifications of Early Large-scale Structures with Protoclusters over 200 Mpc at z ∼ 6–7: Strong Associations of Dusty Star-forming Galaxies , 2019, The Astrophysical Journal.

[14]  D. Corre,et al.  CIGALE: a python Code Investigating GALaxy Emission , 2018, Astronomy & Astrophysics.

[15]  M. Nonino,et al.  Complete IRAC Mapping of the CFHTLS-DEEP, MUSYC, and NMBS-II Fields , 2018, Publications of the Astronomical Society of the Pacific.

[16]  Kyoung-Soo Lee,et al.  A Census of Galaxy Constituents in a Coma Progenitor Observed at z > 3 , 2018, The Astrophysical Journal.

[17]  H. Ferguson,et al.  Evidence of Environmental Quenching at Redshift z ≈ 2 , 2018, The Astrophysical Journal.

[18]  J. Carlstrom,et al.  A massive core for a cluster of galaxies at a redshift of 4.3 , 2018, Nature.

[19]  I. Smail,et al.  ALMA deep field in SSA22: Survey design and source catalog of a 20 arcmin2 survey at 1.1 mm , 2018, Publications of the Astronomical Society of Japan.

[20]  J. Falcón-Barroso,et al.  Timing the formation and assembly of early-type galaxies via spatially resolved stellar populations analysis , 2018, 1801.05486.

[21]  M. Malkan,et al.  Lyman-break Galaxies at z ∼ 3 in the Subaru Deep Field: Luminosity Function, Clustering, and [O iii] Emission , 2017, 1711.04787.

[22]  E. Cooke,et al.  Galaxy evolution in protoclusters , 2017, 1709.07009.

[23]  Z. Cai,et al.  MAHALO Deep Cluster Survey I. Accelerated and enhanced galaxy formation in the densest regions of a protocluster at z = 2.5 , 2017, 1708.06369.

[24]  K. Gebhardt,et al.  Galaxy Protoclusters as Drivers of Cosmic Star Formation History in the First 2 Gyr , 2017, 1705.01634.

[25]  B. Garilli,et al.  The VIMOS Ultra-Deep Survey: Emerging from the dark, a massive proto-cluster at z ~ 4.57 , 2017, Astronomy & Astrophysics.

[26]  O. Fèvre,et al.  The COSMOS2015 galaxy stellar mass function . Thirteen billion years of stellar mass assembly in ten snapshots , 2017, 1701.02734.

[27]  B. Garilli,et al.  The VIMOS Public Extragalactic Redshift Survey (VIPERS): Downsizing of the blue cloud and the influence of galaxy size on mass quenching over the last eight billion years , 2016, 1611.07050.

[28]  R. Overzier The realm of the galaxy protoclusters , 2016, 1610.05201.

[29]  Z. Cai,et al.  Discovery of an Enormous Lyα Nebula in a Massive Galaxy Overdensity at z = 2.3 , 2016, 1609.04021.

[30]  S. Derriere,et al.  T-PHOT version 2.0: improved algorithms for background subtraction, local convolution, kernel registration, and new options , 2016, 1609.00146.

[31]  M. Hayashi,et al.  ENHANCED STAR FORMATION OF LESS MASSIVE GALAXIES IN A PROTOCLUSTER AT z = 2.5 , 2016, 1607.04040.

[32]  Masayuki Tanaka,et al.  A SYSTEMATIC SURVEY OF PROTOCLUSTERS AT z ∼ 3–6 IN THE CFHTLS DEEP FIELDS , 2016, 1605.01439.

[33]  Kyoung-Soo Lee,et al.  SPECTROSCOPIC CONFIRMATION OF A PROTOCLUSTER AT z ≈ 3.786 , 2016, 1604.08627.

[34]  O. Fèvre,et al.  THE COSMOS2015 CATALOG: EXPLORING THE 1 < z < 6 UNIVERSE WITH HALF A MILLION GALAXIES , 2016, 1604.02350.

[35]  C. Casey THE UBIQUITY OF COEVAL STARBURSTS IN MASSIVE GALAXY CLUSTER PROGENITORS , 2016, 1603.04437.

[36]  M. Jarvis,et al.  The evolving relation between star-formation rate and stellar mass in the VIDEO Survey since z=3 , 2015, 1507.07503.

[37]  E. Cooke,et al.  What are protoclusters? – Defining high-redshift galaxy clusters and protoclusters , 2015, 1506.08835.

[38]  S. Derriere,et al.  T-PHOT: A new code for PSF-matched, prior-based, multiwavelength extragalactic deconfusion photometry , 2015, 1505.02516.

[39]  B. Mobasher,et al.  A COMPARATIVE STUDY OF DENSITY FIELD ESTIMATION FOR GALAXIES: NEW INSIGHTS INTO THE EVOLUTION OF GALAXIES WITH ENVIRONMENT IN COSMOS OUT TO z ∼ 3 , 2015, 1503.07879.

[40]  Masayuki Tanaka,et al.  A FIRST SITE OF GALAXY CLUSTER FORMATION: COMPLETE SPECTROSCOPY OF A PROTOCLUSTER AT z = 6.01 , 2014, 1407.1851.

[41]  A. Dey,et al.  DISCOVERY OF A VERY LARGE STRUCTURE AT Z = 3.78 , 2014, 1405.2620.

[42]  J. Silverman,et al.  A HIGHLY CONSISTENT FRAMEWORK FOR THE EVOLUTION OF THE STAR-FORMING “MAIN SEQUENCE” FROM z ∼ 0–6 , 2014, 1405.2041.

[43]  B. Garilli,et al.  VIMOS Ultra-Deep Survey (VUDS): Witnessing the assembly of a massive cluster at z ~ 3.3 , 2014, 1403.4230.

[44]  P. W. Wang,et al.  Discovery of a rich proto-cluster at z = 2.9 and associated diffuse cold gas in the VIMOS Ultra-Deep Survey (VUDS) , 2014, 1403.3691.

[45]  G. Helou,et al.  A TWO-PARAMETER MODEL FOR THE INFRARED/SUBMILLIMETER/RADIO SPECTRAL ENERGY DISTRIBUTIONS OF GALAXIES AND ACTIVE GALACTIC NUCLEI , 2014, 1402.1495.

[46]  Andrew P. Hearin,et al.  Galaxy assembly bias: a significant source of systematic error in the galaxy–halo relationship , 2013, 1311.1818.

[47]  B. Weiner,et al.  The evolution of dust-obscured star formation activity in galaxy clusters relative to the field over the last 9 billion years , 2013, 1310.6040.

[48]  K. Gebhardt,et al.  ANCIENT LIGHT FROM YOUNG COSMIC CITIES: PHYSICAL AND OBSERVATIONAL SIGNATURES OF GALAXY PROTO-CLUSTERS , 2013, 1310.2938.

[49]  T. Ichikawa,et al.  THE FORMATION OF THE MASSIVE GALAXIES IN THE SSA22 z = 3.1 PROTOCLUSTER , 2013, 1310.2020.

[50]  Richard S. Ellis,et al.  CONTAMINATION OF BROADBAND PHOTOMETRY BY NEBULAR EMISSION IN HIGH-REDSHIFT GALAXIES: INVESTIGATIONS WITH KECK'S MOSFIRE NEAR-INFRARED SPECTROGRAPH , 2013, 1306.1518.

[51]  J. Dunlop,et al.  THE EVOLUTION OF THE STELLAR MASS FUNCTIONS OF STAR-FORMING AND QUIESCENT GALAXIES TO z = 4 FROM THE COSMOS/UltraVISTA SURVEY , 2013, 1303.4409.

[52]  A. M. Swinbank,et al.  On the evolution and environmental dependence of the star formation rate versus stellar mass relation since z ∼ 2 , 2013, 1302.5315.

[53]  Y. Mellier,et al.  Mass assembly in quiescent and star-forming galaxies since z ≃ 4 from UltraVISTA , 2013, 1301.3157.

[54]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS , 2012, 1212.5226.

[55]  D. Stern,et al.  ASSEMBLY OF THE RED SEQUENCE IN INFRARED-SELECTED GALAXY CLUSTERS FROM THE IRAC SHALLOW CLUSTER SURVEY , 2012, 1207.4790.

[56]  C. Marmo,et al.  The WIRCam Deep Survey I. Counts, colours, and mass-functions derived from near-infrared imaging in the CFHTLS deep fields , 2011, 1111.6997.

[57]  S. White,et al.  Confronting theoretical models with the observed evolution of the galaxy population out to z= 4 , 2011, 1109.3457.

[58]  Kyoung-Soo Lee,et al.  THE NUMBER DENSITY AND MASS DENSITY OF STAR-FORMING AND QUIESCENT GALAXIES AT 0.4 ⩽ z ⩽ 2.2 , 2011, 1104.2595.

[59]  S. Gwyn,et al.  The CFHT Legacy Survey: stacked images and catalogs , 2011, 1101.1084.

[60]  Risa H. Wechsler,et al.  THE VORONOI TESSELLATION CLUSTER FINDER IN 2+1 DIMENSIONS , 2010, 1011.3458.

[61]  M. Cirasuolo,et al.  The stellar mass function of the most-massive galaxies at 3 ≤z < 5 in the UKIDSS Ultra Deep Survey , 2010, 1008.5244.

[62]  D. Eisenstein,et al.  STRONG FIELD-TO-FIELD VARIATION OF Lyα NEBULAE POPULATIONS AT z ≃ 2.3 , 2010, 1008.2776.

[63]  J. Dunlop,et al.  REVERSAL OF FORTUNE: CONFIRMATION OF AN INCREASING STAR FORMATION–DENSITY RELATION IN A CLUSTER AT z = 1.62 , 2010, 1005.5126.

[64]  A. Dekel,et al.  On the origin of the galaxy star‐formation‐rate sequence: evolution and scatter , 2009, 0912.2169.

[65]  V. Buat,et al.  Analysis of galaxy spectral energy distributions from far-UV to far-IR with CIGALE: studying a SINGS test sample , 2009, 0909.5439.

[66]  Bangalore,et al.  Optical identification of XMM sources in the CFHTLS , 2009, 0909.0464.

[67]  B. Garilli,et al.  zCOSMOS – 10k-bright spectroscopic sample - The bimodality in the galaxy stellar mass function: exploring its evolution with redshift , 2009, 0907.5416.

[68]  A. Edge,et al.  The evolution of the red sequence slope in massive galaxy clusters , 2009, 0901.1227.

[69]  F. Fontanot,et al.  The many manifestations of downsizing: hierarchical galaxy formation models confront observations , 2009, 0901.1130.

[70]  N. Hathi,et al.  STELLAR POPULATIONS OF LATE-TYPE BULGES AT z ≃ 1 IN THE HUBBLE ULTRA DEEP FIELD , 2008, 0805.0791.

[71]  L. Gao,et al.  On halo formation times and assembly bias , 2008, 0803.2250.

[72]  M. Stiavelli,et al.  Cosmic Variance and Its Effect on the Luminosity Function Determination in Deep High-z Surveys , 2007, 0712.0398.

[73]  C. Conselice,et al.  The DEEP2 Galaxy Redshift Survey: the role of galaxy environment in the cosmic star formation history , 2007, 0706.4089.

[74]  J. Starck,et al.  The reversal of the star formation-density relation in the distant universe , 2007, astro-ph/0703653.

[75]  B. Draine,et al.  Infrared Emission from Interstellar Dust. IV. The Silicate-Graphite-PAH Model in the Post-Spitzer Era , 2006, astro-ph/0608003.

[76]  B. Garilli,et al.  Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey , 2006, astro-ph/0603217.

[77]  H. Rottgering,et al.  Lyman Break Galaxies, Lyα Emitters, and a Radio Galaxy in a Protocluster at z = 4.1 , 2006, astro-ph/0601223.

[78]  R. Wechsler,et al.  The Dependence of Halo Clustering on Halo Formation History, Concentration, and Occupation , 2005, astro-ph/0512416.

[79]  S. Okamura,et al.  Large-Scale Filamentary Structure around the Protocluster at Redshift z = 3.1 , 2005, astro-ph/0510762.

[80]  Iap,et al.  The ages and metallicities of galaxies in the local universe , 2005, astro-ph/0506539.

[81]  S. White,et al.  The age dependence of halo clustering , 2005, astro-ph/0506510.

[82]  D. Madgwick,et al.  Measuring Galaxy Environments with Deep Redshift Surveys , 2005, astro-ph/0506518.

[83]  P. P. van der Werf,et al.  IRAC Mid-Infrared Imaging of the Hubble Deep Field-South: Star Formation Histories and Stellar Masses of Red Galaxies at z > 2 , 2005, astro-ph/0504219.

[84]  Edinburgh,et al.  Simulating the joint evolution of quasars, galaxies and their large-scale distribution , 2005, astro-ph/0504097.

[85]  C. Steidel,et al.  Spectroscopic Identification of a Protocluster at z = 2.300: Environmental Dependence of Galaxy Properties at High Redshift , 2005, astro-ph/0502432.

[86]  R. Bouwens,et al.  The Morphology-Density Relation in z ~ 1 Clusters , 2005, astro-ph/0501224.

[87]  S. Okamura,et al.  Large-Scale Structure of Emission-Line Galaxies at z = 3.1 , 2004 .

[88]  J. Brinkmann,et al.  The environmental dependence of the relations between stellar mass, structure, star formation and nuclear activity in galaxies , 2004, astro-ph/0402030.

[89]  Chisato Yamauchi,et al.  The morphology–density relation in the Sloan Digital Sky Survey , 2003, astro-ph/0312043.

[90]  J. Brinkmann,et al.  The physical properties of star-forming galaxies in the low-redshift universe , 2003, astro-ph/0311060.

[91]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[92]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[93]  P. P. van der Werf,et al.  Spectroscopic Confirmation of a Substantial Population of Luminous Red Galaxies at Redshifts z ≳ 2 , 2003, astro-ph/0303166.

[94]  Mauro Giavalisco,et al.  Lyman-Break Galaxies , 2002 .

[95]  R. Nichol,et al.  Stellar masses and star formation histories for 105 galaxies from the Sloan Digital Sky Survey , 2002, astro-ph/0204055.

[96]  Robert J. Brunner,et al.  Detecting Clusters of Galaxies in the Sloan Digital Sky Survey. I. Monte Carlo Comparison of Cluster Detection Algorithms , 2001, astro-ph/0110259.

[97]  M. Nonino,et al.  Finding galaxy clusters using Voronoi tessellations , 2001, astro-ph/0101411.

[98]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[99]  Hia,et al.  Differential Galaxy Evolution in Cluster and Field Galaxies at z ≈ 0.3 , 1999, astro-ph/9906470.

[100]  M. Dickinson,et al.  The Evolution of Early-Type Galaxies in Distant Clusters , 1997, astro-ph/9708037.

[101]  Jr.,et al.  Evolution since z = 0.5 of the Morphology-Density Relation for Clusters of Galaxies , 1997, astro-ph/9707232.

[102]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[103]  R. Ellis,et al.  Precision photometry of early-type galaxies in the Coma and Virgo clusters: a test of the universality of the colour–magnitude relation – II. Analysis , 1992 .

[104]  Michael Stuart,et al.  Understanding Robust and Exploratory Data Analysis , 1984 .

[105]  J. B. Oke,et al.  Secondary standard stars for absolute spectrophotometry , 1983 .

[106]  A. Dressler Galaxy morphology in rich clusters: Implications for the formation and evolution of galaxies , 1980 .

[107]  A. Sandage,et al.  The color - absolute magnitude relation for E and S0 galaxies. I. Calibration and tests for universality using Virgo and eight other nearby clusters. , 1977 .

[108]  P. Petitjean,et al.  Optical identification of XMM sources in the Canada–France–Hawaii Telescope Legacy Survey , 2010 .

[109]  H. Rix,et al.  Accepted for publication in ApJL Preprint typeset using L ATEX style emulateapj v. 6/22/04 SPECTROSCOPIC IDENTIFICATION OF MASSIVE GALAXIES AT Z ∼ 2.3 WITH STRONGLY SUPPRESSED STAR FORMATION 1 , 2006 .

[110]  The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 02/09/03 THE EPOCHS OF EARLY-TYPE GALAXY FORMATION AS A FUNCTION OF ENVIRONMENT , 2004 .

[111]  P. V. D. Okkum,et al.  ACCEPTED FOR PUBLICATION IN APJ LETTERS Preprint typeset using L ATEX style emulateapj A SIGNIFICANT POPULATION OF RED, NEAR-IR SELECTED HIGH REDSHIFT GALAXIES 1 , 2003 .

[112]  William H. Richardson,et al.  Bayesian-Based Iterative Method of Image Restoration , 1972 .

[113]  M. Franx,et al.  SUBMITTED TO THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 DETECTION OF QUIESCENT GALAXIES IN A BICOLOR SEQUENCE FROM Z = 0 − 2 , 2022 .