Computational complexity of sentences over fields

Hilbert's Irreducibility Theorem is applied to find the upper bounds of the time complexities of various decision problems in arithmetical sentences and the following results are proved:1.The decision problem of @[email protected]? sentences over an algebraic number field is in P. 2.The decision problem of @[email protected]? sentences over the collection of all fields with characteristic 0 is in P. 3.The decision problem of @[email protected]? sentences over a function field with characteristic p is polynomial time reducible to the factorization of polynomials over Z"p. 4.The decision problem of @[email protected]? sentences over the collection of all fields with characteristic p is polynomial time reducible to the factorization of polynomials over Z"p. 5.The decision problem of @[email protected]? sentences over the collection of all fields is polynomial time reducible to the factorization of integers over Z and the factorization of polynomials over finite fields.

[1]  Erich Kaltofen,et al.  Fast Parallel Absolute Irreducibility Testing , 1985, J. Symb. Comput..

[2]  Simon Kochen,et al.  DIOPHANTINE PROBLEMS OVER LOCAL FIELDS II. A COMPLETE SET OF AXIOMS FOR p-ADIC NUMBER THEORY.* , 1965 .

[3]  Shih Ping Tung,et al.  Computational Complexities of Diophantine Equations with Parameters , 1987, J. Algorithms.

[4]  Michael D. Fried,et al.  Solving Diophantine Problems Over All Residue Class Fields of a Number Field and All Finite Fields , 1976 .

[5]  Elliott Mendelson,et al.  Introduction to mathematical logic (3. ed.) , 1987 .

[6]  Angus Macintyre,et al.  On definable subsets of p-adic fields , 1976, Journal of Symbolic Logic.

[7]  H. Lenstra Finding small degree factors of lacunary polynomials , 1999 .

[8]  A. Chistov,et al.  Algorithm of polynomial complexity for factoring polynomials and finding the components of varieties in subexponential time , 1986 .

[9]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[10]  Arjen K. Lenstra,et al.  Factoring Multivariate Polynomials over Algebraic Number Fields , 1984, SIAM J. Comput..

[11]  A. Baker Transcendental Number Theory , 1975 .

[12]  Christos H. Papadimitriou,et al.  Elements of the Theory of Computation , 1997, SIGA.

[13]  D. Hilbert Ueber die Irreducibilität ganzer rationaler Functionen mit ganzzahligen Coefficienten. , 1892 .

[14]  H. W. Lenstra,et al.  Factoring integers with elliptic curves , 1987 .

[15]  Arjen K. Lenstra,et al.  Factoring multivariate polynomials over finite fields , 1983, J. Comput. Syst. Sci..

[16]  J. Maurice Rojas Computational Arithmetic Geometry I. Sentences Nearly in the Polynomial Hierarchy , 2001, J. Comput. Syst. Sci..

[17]  Shih Ping Tung,et al.  Polynomial Time Algorithms for Sentences over Number Fields , 1992, Inf. Comput..

[18]  Erich Kaltofen,et al.  Factoring Sparse Multivariate Polynomials , 1983, J. Comput. Syst. Sci..

[19]  Joachim von zur Gathen,et al.  Modern Computer Algebra (3. ed.) , 2003 .

[20]  S. Tung Provability and Decidability of Arithmetical Universal-Existential Sentences , 1986 .

[21]  D. Grigor'ev,et al.  Factorization of polynomials over a finite field and the solution of systems of algebraic equations , 1986 .

[22]  Erich Kaltofen,et al.  Polynomial-Time Reductions from Multivariate to Bi- and Univariate Integral Polynomial Factorization , 1985, SIAM J. Comput..

[23]  Gary L. Miller,et al.  Solvability by Radicals is in Polynomial Time , 1985, J. Comput. Syst. Sci..

[24]  Andrzej Schinzel,et al.  Selected topics on polynomials , 1982 .

[25]  S. Lang Fundamentals of Diophantine Geometry , 1983 .

[26]  Shih Ping Tung,et al.  Sentences over Integral Domains and Their Computational Complexities , 1999, Inf. Comput..

[27]  R. Robinson THE UNDECIDABILITY OF PURE TRANSCENDENTAL EXTENSIONS OF REAL FIELDS , 1964 .

[28]  Ming-Deh A. Huang Generalized Riemann Hypothesis and Factoring Polynomials over Finite Fields , 1991, J. Algorithms.

[29]  Moshe Jarden,et al.  THE ELEMENTARY THEORY OF FINITE FIELDS , 2004 .

[30]  Larry J. Stockmeyer,et al.  The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[31]  Peter J. Weinberger,et al.  Factoring Polynomials Over Algebraic Number Fields , 1976, TOMS.

[32]  Erich Kaltofen Effective Hilbert Irreducibility , 1985, Inf. Control..

[33]  Shih Ping Tung,et al.  Computational Complexity of Arithmetical Sentences , 1995, Inf. Comput..

[34]  N. Jacobson,et al.  Basic Algebra I , 1976 .

[35]  Joachim von zur Gathen,et al.  Modern Computer Algebra , 1998 .

[36]  Julia Robinson,et al.  Definability and decision problems in arithmetic , 1949, Journal of Symbolic Logic.

[37]  J. Robinson The undecidability of algebraic rings and fields , 1959 .

[38]  S. Kochen,et al.  Diophantine Problems Over Local Fields I , 1965 .

[39]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[40]  H. Lenstra On the factorization of lacunary polynomials , 1999 .

[41]  Joos Heintz,et al.  Absolute Primality of Polynomials is Decidable in Random Polynomial Time in the Number of Variables , 1981, ICALP.

[42]  Joachim von zur Gathen,et al.  Irreducibility of Multivariate Polynomials , 1985, J. Comput. Syst. Sci..

[43]  Shih Ping Tung,et al.  Decidable fragments of field theories , 1990, Journal of Symbolic Logic.

[44]  Elliott Mendelson,et al.  Introduction to Mathematical Logic , 1979 .

[45]  R. Tennant Algebra , 1941, Nature.