From the computer to the laboratory: materials discovery and design using first-principles calculations

The development of new technological materials has historically been a difficult and time-consuming task. The traditional role of computation in materials design has been to better understand existing materials. However, an emerging paradigm for accelerated materials discovery is to design new compounds in silico using first-principles calculations, and then perform experiments on the computationally designed candidates. In this paper, we provide a review of ab initio computational materials design, focusing on instances in which a computational approach has been successfully applied to propose new materials of technological interest in the laboratory. Our examples include applications in renewable energy, electronic, magnetic and multiferroic materials, and catalysis, demonstrating that computationally guided materials design is a broadly applicable technique. We then discuss some of the common features and limitations of successful theoretical predictions across fields, examining the different ways in which first-principles calculations can guide the final experimental result. Finally, we present a future outlook in which we expect that new models of computational search, such as high-throughput studies, will play a greater role in guiding materials advancements.

[1]  Anubhav Jain,et al.  Recharging lithium battery research with first-principles methods , 2011 .

[2]  T E Browder,et al.  Observation of the D(sJ)(2317) and D(sJ)(2457) in B decays. , 2003, Physical review letters.

[3]  Anubhav Jain,et al.  Evaluation of Tavorite-Structured Cathode Materials for Lithium-Ion Batteries Using High-Throughput Computing , 2011 .

[4]  Jens K. Nørskov,et al.  Combinatorial Density Functional Theory-Based Screening of Surface Alloys for the Oxygen Reduction Reaction , 2009 .

[5]  N. Spaldin Magnetic Materials : Fundamentals and Applications , 2010 .

[6]  Claudia Felser,et al.  Structure and properties of CoMnSb in the context of half-metallic ferromagnetism , 2006 .

[7]  Manos Mavrikakis,et al.  Preferential CO oxidation in hydrogen: reactivity of core-shell nanoparticles. , 2010, Journal of the American Chemical Society.

[8]  G. Madsen,et al.  Automated search for new thermoelectric materials: the case of LiZnSb. , 2006, Journal of the American Chemical Society.

[9]  Christopher M Wolverton,et al.  First-principles computational discovery of materials for hydrogen storage , 2009 .

[10]  Richard M. Martin Electronic Structure: Frontmatter , 2004 .

[11]  Anubhav Jain,et al.  A high-throughput infrastructure for density functional theory calculations , 2011 .

[12]  M. Dresselhaus,et al.  Recent developments in thermoelectric materials , 2003 .

[13]  A. Panchula,et al.  Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers , 2004, Nature materials.

[14]  I. D. Brown,et al.  The inorganic crystal structure data base , 1983, J. Chem. Inf. Comput. Sci..

[15]  Alex Zunger,et al.  Global space-group optimization problem : Finding the stablest crystal structure without constraints , 2007 .

[16]  Stefano Curtarolo,et al.  Theoretical study of metal borides stability , 2006 .

[17]  Thomas Bligaard,et al.  Virtual materials design using databases of calculated materials properties , 2009 .

[18]  J. C. Schön,et al.  Predicting solid compounds via global exploration of the energy landscape of solids on the ab initio level without recourse to experimental information , 2010 .

[19]  David S Sholl,et al.  Identification of destabilized metal hydrides for hydrogen storage using first principles calculations. , 2006, The journal of physical chemistry. B.

[20]  S. Godtfredsen,et al.  Ullmann ' s Encyclopedia of Industrial Chemistry , 2017 .

[21]  M Akatsu,et al.  Observation of B0-->D*sJ(2317)+K- decay. , 2005, Physical review letters.

[22]  Stefano Gabici,et al.  Pointlike gamma ray sources as signatures of distant accelerators of ultrahigh energy cosmic rays. , 2005, Physical review letters.

[23]  E. Baerends,et al.  Self-consistent approximation to the Kohn-Sham exchange potential. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[24]  Donald J. Siegel,et al.  Discovery of novel hydrogen storage materials: an atomic scale computational approach , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[25]  T. T. Rantala,et al.  Kohn-Sham potential with discontinuity for band gap materials , 2010, 1003.0296.

[26]  Dieter Fischer,et al.  Experimental substantiation of the "energy landscape concept" for solids: synthesis of a new modification of LiBr. , 2008, Angewandte Chemie.

[27]  L. Hedin NEW METHOD FOR CALCULATING THE ONE-PARTICLE GREEN'S FUNCTION WITH APPLICATION TO THE ELECTRON-GAS PROBLEM , 1965 .

[28]  Gerbrand Ceder,et al.  Toward Computational Materials Design: The Impact of Density Functional Theory on Materials Research , 2006 .

[29]  M. Julliere Tunneling between ferromagnetic films , 1975 .

[30]  Mario Valle,et al.  How to quantify energy landscapes of solids. , 2009, The Journal of chemical physics.

[31]  David C. Johnson Solid-state chemistry: New order for lithium bromide , 2008, Nature.

[32]  Nicola A. Spaldin,et al.  The Renaissance of Magnetoelectric Multiferroics , 2005, Science.

[33]  Weitao Yang,et al.  Fractional charge perspective on the band gap in density-functional theory , 2007, 0708.3175.

[34]  Alex Zunger,et al.  Theoretical predictions of electronic materials and their properties , 1998 .

[35]  Alán Aspuru-Guzik,et al.  Accelerated computational discovery of high-performance materials for organic photovoltaics by means of cheminformatics , 2011 .

[36]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[37]  Gerbrand Ceder,et al.  THE LI INTERCALATION POTENTIAL OF LIMPO4 AND LIMSIO4 OLIVINES WITH M = FE, MN, CO, NI , 2004 .

[38]  Ying Shirley Meng,et al.  First principles computational materials design for energy storage materials in lithium ion batteries , 2009 .

[39]  Andrea Benaglia,et al.  Transverse-Momentum and Pseudorapidity Distributions of Charged Hadrons in pp Collisions at root s=7 TeV , 2010 .

[40]  Weifang Luo,et al.  (LiNH2-MgH2): a viable hydrogen storage system , 2004 .

[41]  Kristin A. Persson,et al.  Predicting crystal structures with data mining of quantum calculations. , 2003, Physical review letters.

[42]  Cohen,et al.  Theory of graphitic boron nitride nanotubes. , 1994, Physical review. B, Condensed matter.

[43]  Santanu Chaudhuri,et al.  Turning aluminium into a noble-metal-like catalyst for low-temperature activation of molecular hydrogen. , 2011, Nature materials.

[44]  Marvin L. Cohen,et al.  Predicting properties and new materials , 1994 .

[45]  David L. Carroll,et al.  Tunneling microscopy and spectroscopy of multiwalled boron nitride nanotubes , 2003 .

[46]  J. L. Costa-Krämer,et al.  Large magnetoresistance in Fe/MgO/FeCo(001) epitaxial tunnel junctions on GaAs(001) , 2001 .

[47]  Richard Dronskowski,et al.  Predicting new ferromagnetic nitrides from electronic structure theory: IrFe3N and RhFe3N. , 2005, Angewandte Chemie.

[48]  Claudia Felser,et al.  Tailoring the electronic structure of half-metallic Heusler alloys , 2009 .

[49]  J. C. Maan,et al.  Bistability and discontinuity in the tunnel current of two-dimensional electron-hole layers , 2001 .

[50]  A. Lichtenstein,et al.  First-principles calculations of electronic structure and spectra of strongly correlated systems: the LDA+U method , 1997 .

[51]  Paulina Jaramillo,et al.  Greenhouse gas implications of using coal for transportation: Life cycle assessment of coal-to-liquids, plug-in hybrids, and hydrogen pathways , 2009 .

[52]  Jörg Fink,et al.  Electronic structure of multiwall boron nitride nanotubes , 2003 .

[53]  S. Cheong,et al.  Multiferroics: a magnetic twist for ferroelectricity. , 2007, Nature materials.

[54]  Shigeaki Ono,et al.  High-pressure transition of CaCO3 , 2007 .

[55]  Anubhav Jain,et al.  Data mined ionic substitutions for the discovery of new compounds. , 2011, Inorganic chemistry.

[56]  Clausen,et al.  Design of a surface alloy catalyst for steam reforming , 1998, Science.

[57]  Mark G. Blamire,et al.  Structural and Dielectric Properties of SnTiO3, a Putative Ferroelectric , 2011 .

[58]  Detlef Diesing,et al.  Trapping of transient processes in aluminium oxide thin films in a voltage pulse experiment , 2002 .

[59]  F. Ducastelle Order and Phase Stability in Alloys , 1991 .

[60]  Mildred S. Dresselhaus,et al.  The Hydrogen Fuel Alternative , 2008 .

[61]  Emily A. Carter,et al.  Challenges in Modeling Materials Properties Without Experimental Input , 2008, Science.

[62]  Michael O'Keeffe,et al.  Aspects of crystal structure prediction: some successes and some difficulties. , 2010, Physical chemistry chemical physics : PCCP.

[63]  Nicola A. Spaldin,et al.  Recent progress in first-principles studies of magnetoelectric multiferroics , 2005 .

[64]  C. S. Wang,et al.  Density-functional theory of excitation spectra of semiconductors; application to Si , 1983 .

[65]  Georg K. H. Madsen,et al.  Experimental and theoretical investigations of strongly correlated FeSb 2 − x Sn x , 2006 .

[66]  Anubhav Jain,et al.  Phosphates as Lithium-Ion Battery Cathodes: An Evaluation Based on High-Throughput ab Initio Calculations , 2011 .

[67]  I. Bizjak,et al.  Measurement of branching fractions for B-->eta(c)K(*) decays. , 2002, Physical review letters.

[68]  Guy Makov,et al.  Density functional theory: An introduction , 2000 .

[69]  Olle Heinonen,et al.  Giant magnetic anisotropy in tetragonal FeCo alloys. , 2004, Physical review letters.

[70]  Richard Dronskowski,et al.  Itinerant Ferromagnet RhFe3N: Advanced Synthesis and 57Fe Mössbauer Analysis , 2009 .

[71]  G. Ceder,et al.  Efficient band gap prediction for solids. , 2010, Physical review letters.

[72]  Richard Dronskowski,et al.  Chemically tuning between ferromagnetism and antiferromagnetism by combining theory and synthesis in iron/manganese rhodium borides. , 2002, Angewandte Chemie.

[73]  White,et al.  Are fullerene tubules metallic? , 1992, Physical review letters.

[74]  Shyue Ping Ong,et al.  Hybrid density functional calculations of redox potentials and formation energies of transition metal compounds , 2010 .

[75]  Anubhav Jain,et al.  Accuracy of density functional theory in predicting formation energies of ternary oxides from binary oxides and its implication on phase stability , 2012 .

[76]  Eric S. Toberer,et al.  Thermoelectric properties of p-type LiZnSb : Assessment of ab initio calculations , 2009 .

[77]  C Bozzi,et al.  Measurements of CP-violating asymmetries in B0-->K(0)(s)pi(0) decays. , 2004, Physical review letters.

[78]  Alex Zunger,et al.  Adaptive crystal structures: CuAu and NiPt. , 2003, Physical review letters.

[79]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[80]  Filip Tuomisto,et al.  Positrons as interface-sensitive probes of polar semiconductor heterostructures , 2010 .

[81]  P. Blaha,et al.  Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. , 2009, Physical review letters.

[82]  Anubhav Jain,et al.  Formation enthalpies by mixing GGA and GGA + U calculations , 2011 .

[83]  Karin M. Rabe,et al.  FIRST-PRINCIPLES INVESTIGATION OF FERROMAGNETISM AND FERROELECTRICITY IN BISMUTH MANGANITE , 1999 .

[84]  Thomas Olsen,et al.  Computational screening of perovskite metal oxides for optimal solar light capture , 2012 .

[85]  Steven G. Louie,et al.  Boron Nitride Nanotubes , 1995, Science.

[86]  A. Umerski,et al.  Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe(001) junction , 2001 .

[87]  A. Oganov,et al.  Crystal structure prediction using ab initio evolutionary techniques: principles and applications. , 2006, The Journal of chemical physics.

[88]  J. Doye,et al.  Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.

[89]  Thomas Bligaard,et al.  Identification of Non-Precious Metal Alloy Catalysts for Selective Hydrogenation of Acetylene , 2008, Science.

[90]  Zhigang Zak Fang,et al.  Potential of Binary Lithium Magnesium Nitride for Hydrogen Storage Applications , 2007 .

[91]  J. Nørskov,et al.  Computational high-throughput screening of electrocatalytic materials for hydrogen evolution , 2006, Nature materials.

[92]  Anthony K. Cheetham,et al.  Evidence for the likely occurrence of magnetoferroelectricity in the simple perovskite, BiMnO3 , 2002 .

[93]  C. Choy,et al.  Monte Carlo simulation of the dielectric susceptibility of Ginzburg-Landau mode relaxors , 2004 .

[94]  Alex Zunger,et al.  Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: Case studies for ZnO and GaAs , 2008 .

[95]  W. Sachtler,et al.  Interaction of Formic Acid Vapour with Tungsten , 1960 .

[96]  E Weinan,et al.  Heterogeneous multiscale method: A general methodology for multiscale modeling , 2003 .

[97]  Gerbrand Ceder,et al.  Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides , 1997 .

[98]  Jochen Barthel,et al.  Perpendicular magnetic anisotropy induced by tetragonal distortion of FeCo alloy films grown on Pd(001). , 2006, Physical review letters.

[99]  M. Schlüter,et al.  Density-Functional Theory of the Energy Gap , 1983 .

[100]  Claudia Felser,et al.  Magnetic transitions in double perovskite Sr2FeRe1- xSbxO6 (0≤x≤0.9) , 2006 .

[101]  A Paul Alivisatos,et al.  Materials availability expands the opportunity for large-scale photovoltaics deployment. , 2009, Environmental science & technology.

[102]  M. A. Subramanian,et al.  First principles studies of SnTiO3 perovskite as potential environmentally benign ferroelectric material , 2008, 0807.2534.

[103]  A. Rinzler,et al.  Electronic structure of atomically resolved carbon nanotubes , 1998, Nature.

[104]  Anubhav Jain,et al.  Synthesis and Electrochemical Properties of Monoclinic LiMnBO3 as a Li Intercalation Material , 2011 .

[105]  Stefano Curtarolo,et al.  High-throughput combinatorial database of electronic band structures for inorganic scintillator materials. , 2011, ACS combinatorial science.

[106]  Frank Steglich,et al.  Reply [Comment on "Bose-Einstein condensation of magnons in Cs2CuCl4" - Reply] , 2006 .

[107]  G. Ceder A derivation of the Ising model for the computation of phase diagrams , 1993 .

[108]  Thomas Bligaard,et al.  Density functional theory in surface chemistry and catalysis , 2011, Proceedings of the National Academy of Sciences.

[109]  T. Schulthess,et al.  Spin-dependent tunneling conductance of Fe | MgO | Fe sandwiches , 2001 .

[110]  Timothy S Bush,et al.  Evolutionary programming techniques for predicting inorganic crystal structures , 1995 .

[111]  G. Ceder,et al.  Identification of cathode materials for lithium batteries guided by first-principles calculations , 1998, Nature.

[112]  M. Klintenberg,et al.  Data mining and accelerated electronic structure theory as a tool in the search for new functional materials , 2008, 0808.2125.

[113]  H Bracht 半導体同位体ヘテロ構造における自己および外来原子拡散.I.連続体理論計算 , 2007 .

[114]  Gerbrand Ceder,et al.  A First-Principles Approach to Studying the Thermal Stability of Oxide Cathode Materials , 2007 .

[115]  Yanming Ma,et al.  Ionic high-pressure form of elemental boron , 2009, Nature.

[116]  Nicola A. Hill,et al.  Why Are There so Few Magnetic Ferroelectrics , 2000 .

[117]  Venkat Srinivasan,et al.  Resource constraints on the battery energy storage potential for grid and transportation applications , 2011 .

[118]  C Colliex,et al.  Electron energy loss spectroscopy measurement of the optical gaps on individual boron nitride single-walled and multiwalled nanotubes. , 2005, Physical review letters.

[119]  Manos Mavrikakis,et al.  Electronic structure and catalysis on metal surfaces. , 2002, Annual review of physical chemistry.

[120]  Santanu Chaudhuri,et al.  First-principles study of Ti-catalyzed hydrogen chemisorption on an Al surface: a critical first step for reversible hydrogen storage in NaAlH4. , 2005, The journal of physical chemistry. B.

[121]  J. Hafner Atomic-scale computational materials science ☆ , 2000 .

[122]  Ying Shirley Meng,et al.  Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries , 2006, Science.

[123]  J. Nørskov,et al.  A theoretical study of CH4 dissociation on pure and gold‐alloyed Ni(111) surfaces , 1996 .

[124]  Gerbrand Ceder,et al.  Predicting crystal structure by merging data mining with quantum mechanics , 2006, Nature materials.

[125]  Anubhav Jain,et al.  Finding Nature’s Missing Ternary Oxide Compounds Using Machine Learning and Density Functional Theory , 2010 .

[126]  H. Jónsson,et al.  Nudged elastic band method for finding minimum energy paths of transitions , 1998 .

[127]  Gustavo E Scuseria,et al.  Efficient hybrid density functional calculations in solids: assessment of the Heyd-Scuseria-Ernzerhof screened Coulomb hybrid functional. , 2004, The Journal of chemical physics.

[128]  Quan Kuang,et al.  Layered monodiphosphate Li9V3(P2O7)3(PO4)2: A novel cathode material for lithium-ion batteries , 2011 .

[129]  Stefano Curtarolo,et al.  High-throughput electronic band structure calculations: Challenges and tools , 2010, 1004.2974.

[130]  Gerhard Jakob,et al.  Element-specific magnetic moments from core-absorption magnetic circular dichroism of the doped Heusler alloy Co2Cr0.6Fe0.4Al , 2003 .

[131]  J. Perdew,et al.  Density-Functional Theory for Fractional Particle Number: Derivative Discontinuities of the Energy , 1982 .

[132]  J. Maddox Crystals from first principles , 1988, Nature.

[133]  Mills,et al.  Quantum and thermal effects in H2 dissociative adsorption: Evaluation of free energy barriers in multidimensional quantum systems. , 1994, Physical review letters.

[134]  Gerbrand Ceder,et al.  Oxidation energies of transition metal oxides within the GGA+U framework , 2006 .

[135]  Helmut Eschrig,et al.  The effect of chemical disorder on the magnetic anisotropy of strained Fe–Co films , 2011, 1103.5303.

[136]  J. A. E. Eyster,et al.  THE ORIGIN AND CONDUCTION OF THE HEART BEAT , 1921 .

[137]  Richard Dronskowski,et al.  Synthesis, crystal structure, and magnetic properties of the semihard itinerant ferromagnet RhFe3N. , 2005, Angewandte Chemie.

[138]  Alex Zunger,et al.  Structural complexity in binary bcc ground states: The case of bcc Mo-Ta , 2004 .

[139]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[140]  S. Yuasa,et al.  Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions , 2004, Nature materials.

[141]  R. L. Comstock,et al.  Review Modern magnetic materials in data storage , 2002 .

[142]  Riichiro Saito,et al.  Electronic structure of chiral graphene tubules , 1992 .

[143]  E. Gross,et al.  Density-Functional Theory for Time-Dependent Systems , 1984 .

[144]  Stefano Curtarolo,et al.  Data-Mining-Driven Quantum Mechanics for the Prediction of Structure , 2006 .

[145]  Terry M. Tritt,et al.  Thermoelectric Materials, Phenomena, and Applications: A Bird’s Eye View , 2006 .

[146]  Masa Ishigami,et al.  Observation of the giant stark effect in boron-nitride nanotubes. , 2005, Physical review letters.

[147]  S. L. Bud'ko,et al.  Kondo insulator description of spin state transition in FeSb2 , 2005 .

[148]  Anubhav Jain,et al.  A Computational Investigation of Li9M3(P2O7)3(PO4)2 (M = V, Mo) as Cathodes for Li Ion Batteries , 2012 .

[149]  A. Oganov,et al.  Evolutionary crystal structure prediction as a tool in materials design , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[150]  C. Walle,et al.  First-principles calculations for defects and impurities: Applications to III-nitrides , 2004 .

[151]  Steven G. Louie,et al.  Stability and Band Gap Constancy of Boron Nitride Nanotubes , 1994 .

[152]  Lidong Chen,et al.  Thermoelectrics: Direct Solar Thermal Energy Conversion , 2008 .

[153]  Dane Morgan,et al.  Li Conductivity in Li x MPO 4 ( M = Mn , Fe , Co , Ni ) Olivine Materials , 2004 .

[154]  Gerbrand Ceder,et al.  Opportunities and challenges for first-principles materials design and applications to Li battery materials , 2010 .

[155]  R. Martin,et al.  Electronic Structure: Basic Theory and Practical Methods , 2004 .

[156]  Dominique Guyomard,et al.  LiMBO3 (M=Mn, Fe, Co):: synthesis, crystal structure and lithium deinsertion/insertion properties , 2001 .

[157]  A N Kolmogorov,et al.  New superconducting and semiconducting Fe-B compounds predicted with an ab initio evolutionary search. , 2010, Physical review letters.

[158]  Gerbrand Ceder,et al.  First‐Principles Evidence for Stage Ordering in Li x CoO2 , 1998 .

[159]  Stefano Curtarolo,et al.  Prediction of different crystal structure phases in metal borides: A lithium monoboride analog toMgB2 , 2006 .

[160]  J Rossmeisl,et al.  Density functional theory based screening of ternary alkali-transition metal borohydrides: a computational material design project. , 2009, The Journal of chemical physics.

[161]  Steven G. Louie,et al.  Tuning the electronic properties of boron nitride nanotubes with transverse electric fields: A giant dc Stark effect , 2004 .

[162]  Stefano de Gironcoli,et al.  Linear response approach to the calculation of the effective interaction parameters in the LDA + U method , 2004, cond-mat/0405160.

[163]  P. Vanĕk,et al.  A multiferroic material to search for the permanent electric dipole moment of the electron. , 2010, Nature materials.

[164]  Olle Eriksson,et al.  Perpendicular magnetocrystalline anisotropy in tetragonally distorted Fe-Co alloys. , 2006, Physical review letters.

[165]  J. Nagamatsu,et al.  Superconductivity at 39 K in magnesium diboride , 2001, Nature.

[166]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[167]  F. Aryasetiawan,et al.  The GW method , 1997, cond-mat/9712013.

[168]  Alán Aspuru-Guzik,et al.  The Harvard Clean Energy Project. Large-scale computational screening and design of molecular motifs for organic photovoltaics on the World Community Grid , 2011 .

[169]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[170]  Alex Zunger,et al.  Structure prediction and targeted synthesis: a new Na(n)N2 diazenide crystalline structure. , 2010, Journal of Chemical Physics.

[171]  Stephan Lany,et al.  Semiconductor Thermochemistry in Density Functional Calculations , 2008 .

[172]  Gerbrand Ceder,et al.  Predicting Properties from Scratch , 1998, Science.

[173]  J. Nørskov,et al.  Large-scale, density functional theory-based screening of alloys for hydrogen evolution , 2007 .

[174]  Leon L. Shaw,et al.  Evaluation of the hydrogen storage behavior of a LiNH2 + MgH2 system with 1:1 ratio , 2007 .

[175]  Yasuhiro Tokura,et al.  Magnetocapacitance effect in multiferroic BiMnO 3 , 2003 .

[176]  Matt Probert,et al.  A periodic genetic algorithm with real-space representation for crystal structure and polymorph prediction , 2006, cond-mat/0605066.

[177]  Tamio Oguchi,et al.  First-Principles Study of Lead-Free Piezoelectric SnTiO3 , 2008 .

[178]  Frank Steglich,et al.  Colossal Seebeck coefficient in strongly correlated semiconductor FeSb2 , 2007 .

[179]  H. Scheraga,et al.  Global optimization of clusters, crystals, and biomolecules. , 1999, Science.

[180]  Gerbrand Ceder,et al.  Ab initio study of the migration of small polarons in olivine Li x FePO 4 and their association with lithium ions and vacancies , 2006 .

[181]  N. Mathur,et al.  Multiferroic and magnetoelectric materials , 2006, Nature.

[182]  Zhigang Zak Fang,et al.  Effect of milling intensity on the formation of LiMgN from the dehydrogenation of LiNH2–MgH2 (1:1) mixture , 2010 .

[183]  S. Woodley,et al.  Crystal structure prediction from first principles. , 2008, Nature materials.

[184]  Anubhav Jain,et al.  Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations , 2011 .

[185]  Yukio Tanaka,et al.  Electronic structure and spontaneous internal field around nonmagnetic impurities in spin-triplet chiral p-wave superconductors , 2005 .