Copper radical oxidases and related extracellular oxidoreductases of wood-decay Agaricomycetes.

[1]  D. Cullen,et al.  Temporal Alterations in the Secretome of the Selective Ligninolytic Fungus Ceriporiopsis subvermispora during Growth on Aspen Wood Reveal This Organism's Strategy for Degrading Lignocellulose , 2014, Applied and Environmental Microbiology.

[2]  Pedro M. Coutinho,et al.  The carbohydrate-active enzymes database (CAZy) in 2013 , 2013, Nucleic Acids Res..

[3]  D. Hibbett,et al.  Genomewide analysis of polysaccharides degrading enzymes in 11 white- and brown-rot Polyporales provides insight into mechanisms of wood decay , 2013, Mycologia.

[4]  D. Hibbett,et al.  Lignin-degrading peroxidases in Polyporales: an evolutionary survey based on 10 sequenced genomes , 2013, Mycologia.

[5]  T. Salame,et al.  Redundancy among Manganese Peroxidases in Pleurotus ostreatus , 2013, Applied and Environmental Microbiology.

[6]  Albee Y. Ling,et al.  The Paleozoic Origin of Enzymatic Lignin Decomposition Reconstructed from 31 Fungal Genomes , 2012, Science.

[7]  T. Salame,et al.  Predominance of a Versatile-Peroxidase-Encoding Gene, mnp4, as Demonstrated by Gene Replacement via a Gene Targeting System for Pleurotus ostreatus , 2012, Applied and Environmental Microbiology.

[8]  F. J. Ruiz-Dueñas,et al.  Lignin-degrading Peroxidases from Genome of Selective Ligninolytic Fungus Ceriporiopsis subvermispora* , 2012, The Journal of Biological Chemistry.

[9]  A. Salamov,et al.  Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis , 2012, Proceedings of the National Academy of Sciences.

[10]  Robert A. Blanchette,et al.  Microbial and Enzymatic Degradation of Wood and Wood Components , 2012, Springer Series in Wood Science.

[11]  P. Ferreira,et al.  Fungal aryl-alcohol oxidase: a peroxide-producing flavoenzyme involved in lignin degradation , 2012, Applied Microbiology and Biotechnology.

[12]  J. Ståhlberg,et al.  The Putative Endoglucanase PcGH61D from Phanerochaete chrysosporium Is a Metal-Dependent Oxidative Enzyme that Cleaves Cellulose , 2011, PloS one.

[13]  F. J. Ruiz-Dueñas,et al.  Pleurotus ostreatus heme peroxidases: an in silico analysis from the genome sequence to the enzyme molecular structure. , 2011, Comptes rendus biologies.

[14]  José C del Río,et al.  Regioselective oxygenation of fatty acids, fatty alcohols and other aliphatic compounds by a basidiomycete heme-thiolate peroxidase. , 2011, Archives of biochemistry and biophysics.

[15]  L. Lo Leggio,et al.  Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components , 2011, Proceedings of the National Academy of Sciences.

[16]  E. Vlasenko,et al.  Oxidoreductive Cellulose Depolymerization by the Enzymes Cellobiose Dehydrogenase and Glycoside Hydrolase 61 , 2011, Applied and Environmental Microbiology.

[17]  A. Salamov,et al.  The Plant Cell Wall–Decomposing Machinery Underlies the Functional Diversity of Forest Fungi , 2011, Science.

[18]  T. Salame,et al.  RNAi as a potential tool for biotechnological applications in fungi , 2011, Applied Microbiology and Biotechnology.

[19]  M. Hofrichter,et al.  New and classic families of secreted fungal heme peroxidases , 2010, Applied Microbiology and Biotechnology.

[20]  Igor Grigoriev,et al.  Comparative Transcriptome and Secretome Analysis of Wood Decay Fungi Postia placenta and Phanerochaete chrysosporium , 2010, Applied and Environmental Microbiology.

[21]  L. Lo Leggio,et al.  Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. , 2010, Biochemistry.

[22]  Kristiina Hildén,et al.  Lignin‐modifying enzymes in filamentous basidiomycetes – ecological, functional and phylogenetic review , 2010, Journal of basic microbiology.

[23]  M. Hofrichter,et al.  DyP-like peroxidases of the jelly fungus Auricularia auricula-judae oxidize nonphenolic lignin model compounds and high-redox potential dyes , 2010, Applied Microbiology and Biotechnology.

[24]  Ángel T. Martínez,et al.  Induction of Extracellular Hydroxyl Radical Production by White-Rot Fungi through Quinone Redox Cycling , 2009, Applied and Environmental Microbiology.

[25]  Jill Gaskell,et al.  Transcriptome and Secretome Analyses of Phanerochaete chrysosporium Reveal Complex Patterns of Gene Expression , 2009, Applied and Environmental Microbiology.

[26]  Brandi L. Cantarel,et al.  The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics , 2008, Nucleic Acids Res..

[27]  J. Ralph,et al.  Evidence for cleavage of lignin by a brown rot basidiomycete. , 2008, Environmental microbiology.

[28]  Outi Niemenmaa,et al.  Demethoxylation of [O14CH3]-labelled lignin model compounds by the brown-rot fungi Gloeophyllum trabeum and Poria (Postia) placenta , 2008, Biodegradation.

[29]  P. Baldrian,et al.  Degradation of cellulose by basidiomycetous fungi. , 2008, FEMS microbiology reviews.

[30]  S. Ralph,et al.  New Insights into the Ligninolytic Capability of a Wood Decay Ascomycete , 2007, Applied and Environmental Microbiology.

[31]  P. Halada,et al.  Characteristics of Gloeophyllum trabeum Alcohol Oxidase, an Extracellular Source of H2O2 in Brown Rot Decay of Wood , 2007, Applied and Environmental Microbiology.

[32]  D. Cullen,et al.  Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium. , 2007, Fungal genetics and biology : FG & B.

[33]  A. Napolitano,et al.  Glyoxal formation by Fenton-induced degradation of carbohydrates and related compounds. , 2006, Carbohydrate research.

[34]  R. Blanchette,et al.  Structure, Organization, and Transcriptional Regulation of a Family of Copper Radical Oxidase Genes in the Lignin-Degrading Basidiomycete Phanerochaete chrysosporium , 2006, Applied and Environmental Microbiology.

[35]  D. Haltrich,et al.  Cellobiose dehydrogenase--a flavocytochrome from wood-degrading, phytopathogenic and saprotropic fungi. , 2006, Current protein & peptide science.

[36]  M. Hofrichter,et al.  The haloperoxidase of the agaric fungus Agrocybe aegerita hydroxylates toluene and naphthalene , 2005, FEBS letters.

[37]  M. Bölker,et al.  A H2O2-producing glyoxal oxidase is required for filamentous growth and pathogenicity in Ustilago maydis , 2005, Molecular Genetics and Genomics.

[38]  T. Shimokawa,et al.  Production of 2,5-dimethoxyhydroquinone by the brown-rot fungus Serpula lacrymans to drive extracellular Fenton reaction , 2004 .

[39]  R. Cohen,et al.  Differential Stress-Induced Regulation of Two Quinone Reductases in the Brown Rot Basidiomycete Gloeophyllum trabeum , 2004, Applied and Environmental Microbiology.

[40]  R. Cohen,et al.  Significant levels of extracellular reactive oxygen species produced by brown rot basidiomycetes on cellulose , 2002, FEBS letters.

[41]  A. Gutiérrez,et al.  Production of New Unsaturated Lipids during Wood Decay by Ligninolytic Basidiomycetes , 2002, Applied and Environmental Microbiology.

[42]  T. Watanabe,et al.  Production and chemiluminescent free radical reactions of glyoxal in lipid peroxidation of linoleic acid by the ligninolytic enzyme, manganese peroxidase. , 2001, European journal of biochemistry.

[43]  B. Goodell,et al.  Mechanisms of wood degradation by brown-rot fungi: chelator-mediated cellulose degradation and binding of iron by cellulose. , 2001, Journal of biotechnology.

[44]  T. Watanabe,et al.  Formation of acyl radical in lipid peroxidation of linoleic acid by manganese-dependent peroxidase from Ceriporiopsis subvermispora and Bjerkandera adusta. , 2000, European journal of biochemistry.

[45]  G. Pettersson,et al.  A critical review of cellobiose dehydrogenases. , 2000, Journal of biotechnology.

[46]  J. W. Whittaker,et al.  Identification of Catalytic Residues in Glyoxal Oxidase by Targeted Mutagenesis* , 1999, The Journal of Biological Chemistry.

[47]  Paul J Thornalley,et al.  Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. , 1999, The Biochemical journal.

[48]  K. Hammel,,et al.  Peroxyl radicals are potential agents of lignin biodegradation , 1999, FEBS letters.

[49]  F. J. Ruiz-Dueñas,et al.  Description of a Versatile Peroxidase Involved in the Natural Degradation of Lignin That Has Both Manganese Peroxidase and Lignin Peroxidase Substrate Interaction Sites* , 1999, The Journal of Biological Chemistry.

[50]  T. Mester,et al.  Characterization of a Novel Manganese Peroxidase-Lignin Peroxidase Hybrid Isozyme Produced by Bjerkandera Species Strain BOS55 in the Absence of Manganese* , 1998, The Journal of Biological Chemistry.

[51]  John E. Haight,et al.  Cell wall alterations in loblolly pine wood decayed by the white-rot fungus, Ceriporiopsis subvermispora , 1997 .

[52]  D. Cullen,et al.  Recent advances on the molecular genetics of ligninolytic fungi. , 1997, Journal of biotechnology.

[53]  A. Ritschkoff,et al.  The effect of oxidative pretreatment on cellulose degradation by Poria placenta and Trichoderma reesei cellulases , 1997, Applied Microbiology and Biotechnology.

[54]  R. Zabel,et al.  Comparison of wood decay among diverse lignicolous fungi , 1997 .

[55]  F. Guillén,et al.  Quinone redox cycling in the ligninolytic fungus Pleurotus eryngii leading to extracellular production of superoxide anion radical. , 1997, Archives of biochemistry and biophysics.

[56]  S. Camarero,et al.  Manganese-Mediated Lignin Degradation by Pleurotus pulmonarius , 1996, Applied and environmental microbiology.

[57]  J. W. Whittaker,et al.  Glyoxal Oxidase from Phanerochaete chrysosporium Is a New Radical-Copper Oxidase (*) , 1996, The Journal of Biological Chemistry.

[58]  D. Cullen,et al.  Phanerochaete chrysosporium glyoxal oxidase is encoded by two allelic variants: structure, genomic organization, and heterologous expression of glx1 and glx2 , 1995, Journal of bacteriology.

[59]  B. Kurek,et al.  Physiological regulation of glyoxal oxidase from Phanerochaete chrysosporium by peroxidase systems , 1995 .

[60]  R. Blanchette Degradation of the lignocellulose complex in wood , 1995 .

[61]  K. Jensen,et al.  H2O2 recycling during oxidation of the arylglycerol beta-aryl ether lignin structure by lignin peroxidase and glyoxal oxidase. , 1994, Biochemistry.

[62]  K. Jensen,et al.  Oxidative degradation of non‐phenolic lignin during lipid peroxidation by fungal manganese peroxidase , 1994, FEBS letters.

[63]  G. Daniel,et al.  Pyranose Oxidase, a Major Source of H2O2 during Wood Degradation by Phanerochaete chrysosporium, Trametes versicolor, and Oudemansiella mucida , 1994, Applied and environmental microbiology.

[64]  S. Phillips,et al.  Crystal structure of a free radical enzyme, galactose oxidase. , 1994, Journal of molecular biology.

[65]  P Bork,et al.  Drosophila kelch motif is derived from a common enzyme fold. , 1994, Journal of molecular biology.

[66]  M. Gold,et al.  Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium , 1993, Microbiological reviews.

[67]  D. Cullen,et al.  Cloning and characterization of cDNA encoding glyoxal oxidase, a H2O2-producing enzyme from the lignin-degrading basidiomycete Phanerochaete chrysosporium. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[68]  P. Kersten Glyoxal oxidase of Phanerochaete chrysosporium: its characterization and activation by lignin peroxidase. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[69]  T. Higuchi,et al.  Lignin biochemistry: Biosynthesis and biodegradation , 1990, Wood Science and Technology.

[70]  H. Schoemaker,et al.  Degradation of lignin by Phanerochaete chrysosporium , 1990 .

[71]  K. Messner,et al.  Ultrastructural localization of ligninase ofPhanerochaete chrysosporium by immunogold labeling , 1988, Current Microbiology.

[72]  P. Kersten,et al.  Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium , 1987, Journal of bacteriology.

[73]  T. Umezawa,et al.  Aromatic Ring Cleavage of Various β-O-4 Lignin Model Dimers by Phanerochaete chrysosporium , 1986 .

[74]  J. Glenn,et al.  Mn(II) oxidation is the principal function of the extracellular Mn-peroxidase from Phanerochaete chrysosporium. , 1986, Archives of biochemistry and biophysics.

[75]  V. Renganathan,et al.  SPECTRAL CHARACTERIZATION OF THE OXIDIZED STATES OF LIGNIN PEROXIDASE, AN EXTRACELLULAR HEME ENZYME FROM THE WHITE ROT BASIDIOMYCETE PHANEROCHAETE CHRYSOSPORIUM , 1986 .

[76]  J. Glenn,et al.  Purification and characterization of an extracellular Mn(II)-dependent peroxidase from the lignin-degrading basidiomycete, Phanerochaete chrysosporium. , 1985, Archives of biochemistry and biophysics.

[77]  M. Leisola,et al.  Aromatic ring cleavage of veratryl alcohol by Phanerochaete chrysosporium , 1985 .

[78]  V. Renganathan,et al.  Multiple molecular forms of diarylpropane oxygenase, an H2O2-requiring, lignin-degrading enzyme from Phanerochaete chrysosporium. , 1985, Archives of biochemistry and biophysics.

[79]  R. Crawford,et al.  Enzymatic activities of an extracellular, manganese-dependent peroxidase from Phanerochaete chrysosporium , 1985 .

[80]  M. Tien,et al.  Mechanism of oxidative C alpha-C beta cleavage of a lignin model dimer by Phanerochaete chrysosporium ligninase. Stoichiometry and involvement of free radicals. , 1985, The Journal of biological chemistry.

[81]  M. Kuwahara,et al.  Separation and characterization of two extracelluar H2O2‐dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium , 1984 .

[82]  M. Tien,et al.  Lignin-degrading enzyme from Phanerochaete chrysosporium: Purification, characterization, and catalytic properties of a unique H(2)O(2)-requiring oxygenase. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[83]  G. Zancan,et al.  New substrate for galactose oxidase. , 1970, Biochimica et biophysica acta.

[84]  E. Cowling Comparative Biochemistry of the Decay of Sweetgum Sapwood by White-Rot and Brown-Rot Fungi , 1961 .

[85]  M. Sternberg,et al.  Protein structure prediction on the Web: a case study using the Phyre server , 2009, Nature Protocols.

[86]  J. W. Whittaker The radical chemistry of galactose oxidase. , 2005, Archives of biochemistry and biophysics.

[87]  Barry Goodell,et al.  Brown-rot fungal degradation of wood: our evolving view. , 2003 .

[88]  D. Cullen Molecular Genetics of Lignin-Degrading Fungi and Their Applications in Organopollutant Degradation , 2002 .

[89]  James W Whittaker Galactose oxidase. , 2002, Advances in protein chemistry.

[90]  Ichael,et al.  Analysis of Character Correlations Among Wood Decay Mechanisms , Mating Systems , and Substrate Ranges in Homobasidiomycetes , 2001 .

[91]  C. Divne,et al.  A new scaffold for binding haem in the cytochrome domain of the extracellular flavocytochrome cellobiose dehydrogenase. , 2000, Structure.

[92]  D. Cullen,et al.  Enzymology and Molecular Biology of Lignin Degradation , 1996 .

[93]  J. Paul,et al.  Changes in the Size and Volume of Pores in Sweetgum Wood During Simultaneous Rot by Phanerochaete chrysosporium Burds. , 1993 .

[94]  J. Bennett,et al.  More gene manipulations in fungi , 1991 .

[95]  K. Messner,et al.  Immunoelectron Microscopical Study of the Porosity of Brown-Rot Degraded Pine Wood , 1991 .

[96]  G. Daniel,et al.  Chemistry and Microscopy of Wood Decay by Some Higher Ascomycetes , 1989 .

[97]  R. Farrell,et al.  Enzymatic "combustion": the microbial degradation of lignin. , 1987, Annual review of microbiology.

[98]  R. Gilbertson Wood-Rotting Fungi of North America , 1980 .

[99]  O. Schmidt,et al.  Variability of Wood Degrading Enzymes of Schizophyllum commune , 1980 .