Deformation and Strain Storage Mechanisms during High-Temperature Compression of a Powder Metallurgy Nickel-Base Superalloy

[1]  David L. McDowell,et al.  Estimating fatigue sensitivity to polycrystalline Ni‐base superalloy microstructures using a computational approach , 2007 .

[2]  A. Wilkinson,et al.  Quantification of plastic strain of stainless steel and nickel alloy by electron backscatter diffraction , 2006 .

[3]  A. Wilkinson,et al.  Measurement of plastic strain of polycrystalline material by electron backscatter diffraction , 2005 .

[4]  David Ulrich Furrer,et al.  Processing of nickel-base superalloys for turbine engine disc applications , 2000 .

[5]  K. Chawla,et al.  Mechanical Behavior of Materials , 1998 .

[6]  M. Rabinovich,et al.  Dynamic grain growth during superplastic deformation , 1996 .

[7]  C. Hamilton,et al.  A mechanism for deformation-enhanced grain growth in single phase materials , 1991 .

[8]  K. Chang,et al.  Metallurgical control of fatigue crack propagation in superalloys , 1990 .

[9]  David S. Wilkinson,et al.  On the mechanism of strain-enhanced grain growth during superplastic deformation , 1984 .

[10]  G. J. Davies,et al.  Microstructural changes during superplastic deformation of powder-consolidated nickel-base superalloy IN–100 , 1982 .

[11]  J. W. Edington Microstructural aspects of superplasticity , 1982 .

[12]  J. Tien,et al.  Including stacking fault energy into the resisting stress model for creep of particle strengthened alloys , 1982 .

[13]  A. Mukherjee Deformation Mechanisms in Superplasticity , 1979 .

[14]  J. Embury,et al.  The structure and properties of microduplex Zr-Nb alloys , 1977 .

[15]  M. A Clark,et al.  Deformation enhanced grain growth in a superplastic Sn-1% Bi alloy , 1973 .