Abiotic versus biotic iron mineral transformation studied by a miniaturized backscattering Mössbauer spectrometer (MIMOS II), X-ray diffraction and Raman spectroscopy

Abstract Searching for biomarkers or signatures of microbial transformations of minerals is a critical aspect for determining how life evolved on Earth, and whether or not life may have existed in other planets, including Mars. In order to solve such questions, several missions to Mars have sought to determine the geochemistry and mineralogy on the Martian surface. This research includes the two miniaturized Mossbauer spectrometers (MIMOS II) on board the Mars Exploration Rovers Spirit and Opportunity, which have detected a variety of iron minerals on Mars, including magnetite (Fe2+Fe3+2O4) and goethite (α-FeO(OH)). On Earth, both minerals can derive from microbiological activity (e.g. through dissimilatory iron reduction of ferrihydrite by Fe(III)-reducing bacteria). Here we used a lab based MIMOS II to characterize the mineral products of biogenic transformations of ferrihydrite to magnetite by the Fe(III)-reducing bacteria Geobacter sulfurreducens. In combination with Raman spectroscopy and X-ray diffraction (XRD), we observed the formation of magnetite, goethite and siderite. We compared the material produced by biogenic transformations to abiotic samples in order to distinguish abiotic and biotic iron minerals by techniques that are or will be available onboard Martian based laboratories. The results showed the possibility to distinguish the abiotic and biotic origin of the minerals. Mossbauer was able to distinguish the biotic/abiotic magnetite with the interpretation of the geological context (Fe content mineral assemblages and accompanying minerals) and the estimation of the particle size in a non-destructive way. The Raman was able to confirm the biotic/abiotic principal peaks of the magnetite, as well as the organic principal vibration bands attributed to the bacteria. Finally, the XRD confirmed the particle size and mineralogy.

[1]  A. Arrott,et al.  Ferromagnetic materials : a handbook on the properties of magnetically ordered substances , 1982 .

[2]  D. Ming,et al.  Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit's journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills , 2006 .

[3]  J. Farmer,et al.  Production and early preservation of lipid biomarkers in iron hot springs. , 2014, Astrobiology.

[4]  D. Newman,et al.  Formation of Fe(III)-minerals by Fe(II)-oxidizing photoautotrophic bacteria , 2004 .

[5]  Yuhan Sun,et al.  Transformation of ferrihydrite in the presence or absence of trace Fe(II): The effect of preparation procedures of ferrihydrite , 2009 .

[6]  Jeong Woo Lee,et al.  Formation Pathways of Magnetite Nanoparticles by Coprecipitation Method , 2012 .

[7]  H. Rietveld A profile refinement method for nuclear and magnetic structures , 1969 .

[8]  Monika Hanesch,et al.  Raman spectroscopy of iron oxides and (oxy)hydroxides at low laser power and possible applications in environmental magnetic studies , 2009 .

[9]  Raymond E. Arvidson,et al.  Identification of Carbonate-Rich Outcrops on Mars by the Spirit Rover , 2010, Science.

[10]  Heinz-Wilhelm Hübers,et al.  Optimizing the detection of carotene in cyanobacteria in a martian regolith analogue with a Raman spectrometer for the ExoMars mission , 2012 .

[11]  C. Schröder,et al.  Geochemistry and Mineralogy of Western Australian Salt Lake Sediments: Implications for Meridiani Planum on Mars. , 2016, Astrobiology.

[12]  H. Edwards,et al.  Potential for analysis of carbonaceous matter on Mars using Raman spectroscopy , 2014 .

[13]  U. Bonnes,et al.  Jarosite and Hematite at Meridiani Planum from Opportunity's Mössbauer Spectrometer , 2004, Science.

[14]  M. Usman,et al.  In situ monitoring of lepidocrocite bioreduction and magnetite formation by reflection Mössbauer spectroscopy , 2011 .

[15]  J. Martínez-Frías,et al.  Estudio espectroscópico y DRX de afloramientos terrestres volcánicos en la isla de Tenerife como posibles análogos de la geología marciana , 2015 .

[16]  Ö. Helgason Processes in Geophysics Studied by Mössbauer Spectroscopy , 2004 .

[17]  A. Kappler,et al.  Fe(III) mineral formation and cell encrustation by the nitrate‐dependent Fe(II)‐oxidizer strain BoFeN1 , 2005 .

[18]  Dalva Lúcia Araújo de Faria,et al.  Raman microspectroscopy of some iron oxides and oxyhydroxides , 1997 .

[19]  R. V. Morris,et al.  X-ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater , 2013, Science.

[20]  D. Lovley,et al.  Novel Mode of Microbial Energy Metabolism: Organic Carbon Oxidation Coupled to Dissimilatory Reduction of Iron or Manganese , 1988, Applied and environmental microbiology.

[21]  U. Schwertmann,et al.  The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses , 2003 .

[22]  R. Korotev,et al.  Raman imaging of extraterrestrial materials , 2012 .

[23]  Danyang Wang,et al.  One-dimensional tunable ferroelectric photonic crystals based on Ba[sub 0.7]Sr[sub 0.3]TiO₃/MgO multilayer thin films , 2008 .

[24]  A. Rosencwaig,et al.  Mössbauer spectroscopy of stoichiometric and non-stoichiometric magnetite , 1969 .

[25]  O. Shebanova,et al.  Raman spectroscopic study of magnetite (FeFe2O4): a new assignment for the vibrational spectrum , 2003 .

[26]  A. Kappler,et al.  Secondary Mineral Formation During Ferrihydrite Reduction by Shewanella oneidensis MR-1 Depends on Incubation Vessel Orientation and Resulting Gradients of Cells, Fe2+ and Fe Minerals , 2015 .

[27]  W. Wang,et al.  Crystallite sizes and lattice parameters of nano-biomagnetite particles. , 2010, Journal of nanoscience and nanotechnology.

[28]  J. Stubbs,et al.  Products of abiotic U(VI) reduction by biogenic magnetite and vivianite , 2011 .

[29]  C. Gorski,et al.  Effects of oxyanions, natural organic matter, and bacterial cell numbers on the bioreduction of lepidocrocite (gamma-FeOOH) and the formation of secondary mineralization products. , 2010, Environmental science & technology.

[30]  Frances Westall,et al.  Missions to Mars: Characterization of Mars analogue rocks for the International Space Analogue Rockstore (ISAR) , 2013 .

[31]  Frances Westall,et al.  Testing the ability of the ExoMars 2018 payload to document geological context and potential habitability on Mars , 2015 .

[32]  S. Carr,et al.  Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria , 2015 .

[33]  Juan Rodríguez-Carvajal,et al.  Recent advances in magnetic structure determination by neutron powder diffraction , 1993 .

[34]  A. Kudelski Characterization of thiolate-based mono- and bilayers by vibrational spectroscopy: A review , 2005 .

[35]  U. Bonnes,et al.  Athena MIMOS II Mossbauer spectrometer investigation , 2003 .

[36]  L. Rothschild,et al.  Life in extreme environments , 2001, Nature.

[37]  R. Zsigmondy Kolloidchemie : ein Lehrbuch , 1912 .

[38]  D. Lovley,et al.  Availability of Ferric Iron for Microbial Reduction in Bottom Sediments of the Freshwater Tidal Potomac River , 1986, Applied and environmental microbiology.

[39]  Charles S. Cockell,et al.  Limitations to a microbial iron cycle on Mars , 2012 .

[40]  P. Scherrer,et al.  Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen , 1918 .

[41]  R. Kukkadapu,et al.  Secondary Mineralization Pathways Induced by Dissimilatory Iron Reduction of Ferrihydrite Under Advective Flow , 2003 .

[42]  L. Stookey Ferrozine---a new spectrophotometric reagent for iron , 1970 .

[43]  C. Romanek,et al.  Magnetite as a prokaryotic biomarker: A review , 2010 .

[44]  J. Lloyd,et al.  Control of nanoparticle size, reactivity and magnetic properties during the bioproduction of magnetite by Geobacter sulfurreducens , 2011, Nanotechnology.

[45]  R. Blakemore Magnetotactic bacteria , 1975, Science.

[46]  D. Ming,et al.  Iron mineralogy and aqueous alteration from Husband Hill through Home Plate at Gusev Crater, Mars: Results from the Mössbauer instrument on the Spirit Mars Exploration Rover , 2008 .

[47]  Lisa Grossman NASA urged to seek live Martians with 2020 rover , 2013 .

[48]  R. Leveille,et al.  Validation of astrobiology technologies and instrument operations in terrestrial analogue environments , 2009 .

[49]  O. El-Kabbani,et al.  Comparison of reaction centers from Rhodobacter sphaeroides and Rhodopseudomonas viridis: overall architecture and protein-pigment interactions. , 1991, Biochemistry.

[50]  K. Straub,et al.  Geomicrobiological cycling of iron , 2005 .

[51]  Enrique Iañez-Pareja,et al.  Magnetite biomineralization induced by Shewanella oneidensis , 2010 .

[52]  A. Ferrari,et al.  Raman spectroscopy of graphene and graphite: Disorder, electron phonon coupling, doping and nonadiabatic effects , 2007 .

[53]  J. A. Rodríguez-Losada,et al.  Micro‐Raman spectroscopic study of El Gasco pumice, western Spain , 2007 .

[54]  G. M. da Costa,et al.  Mössbauer characterization of iron oxides and (oxy)hydroxides: the present state of the art , 2000 .

[55]  Juan Rodriguez-Carvaj,et al.  Recent advances in magnetic structure determination neutron powder diffraction , 1993 .

[56]  J. Gubicza,et al.  Phase transition in nanomagnetite , 2008 .

[57]  F. Widdel,et al.  Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism , 1994, Applied and environmental microbiology.

[58]  H. Edwards,et al.  Comparative micro‐Raman study of the Nakhla and Vaca Muerta meteorites , 2004 .

[59]  C. Mustin,et al.  Bacterial and iron oxide aggregates mediate secondary iron mineral formation: green rust versus magnetite , 2010, Geobiology.

[60]  J. A. Rodríguez-Losada,et al.  Raman-Mössbauer-XRD studies of selected samples from “Los Azulejos” outcrop: A possible analogue for assessing the alteration processes on Mars , 2016 .

[61]  S. Benner,et al.  Competing Fe (II)-induced mineralization pathways of ferrihydrite. , 2005, Environmental science & technology.

[62]  D. Ming,et al.  Mineralogy at Gusev Crater from the Mössbauer Spectrometer on the Spirit Rover , 2004, Science.

[63]  G. M. Costa,et al.  INFLUENCE OF NONSTOICHIOMETRY A N D THE PRESENCE OF MAGHEMITE ON THE MOSSBAUER SPECTRUM OF MAGNETITEt , 2006 .

[64]  K. Porsch,et al.  Dependence of microbial magnetite formation on humic substance and ferrihydrite concentrations , 2011 .

[65]  E. Caetano,et al.  Identification of lamivudine conformers by Raman scattering measurements and quantum chemical calculations. , 2007, Journal of pharmaceutical and biomedical analysis.