Abiotic versus biotic iron mineral transformation studied by a miniaturized backscattering Mössbauer spectrometer (MIMOS II), X-ray diffraction and Raman spectroscopy
暂无分享,去创建一个
F. Rull | Andreas Kappler | Christian Schröder | Göstar Klingelhöfer | T. Hoffmann | James M. Byrne | G. Klingelhöfer | T. Hoffmann | C. Schröder | E. Lalla | A. D. Lozano-Gorrín | A. Kappler | J. Byrne | F. Rull | C. Markovski | E. Lalla | C. Markovski
[1] A. Arrott,et al. Ferromagnetic materials : a handbook on the properties of magnetically ordered substances , 1982 .
[2] D. Ming,et al. Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit's journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills , 2006 .
[3] J. Farmer,et al. Production and early preservation of lipid biomarkers in iron hot springs. , 2014, Astrobiology.
[4] D. Newman,et al. Formation of Fe(III)-minerals by Fe(II)-oxidizing photoautotrophic bacteria , 2004 .
[5] Yuhan Sun,et al. Transformation of ferrihydrite in the presence or absence of trace Fe(II): The effect of preparation procedures of ferrihydrite , 2009 .
[6] Jeong Woo Lee,et al. Formation Pathways of Magnetite Nanoparticles by Coprecipitation Method , 2012 .
[7] H. Rietveld. A profile refinement method for nuclear and magnetic structures , 1969 .
[8] Monika Hanesch,et al. Raman spectroscopy of iron oxides and (oxy)hydroxides at low laser power and possible applications in environmental magnetic studies , 2009 .
[9] Raymond E. Arvidson,et al. Identification of Carbonate-Rich Outcrops on Mars by the Spirit Rover , 2010, Science.
[10] Heinz-Wilhelm Hübers,et al. Optimizing the detection of carotene in cyanobacteria in a martian regolith analogue with a Raman spectrometer for the ExoMars mission , 2012 .
[11] C. Schröder,et al. Geochemistry and Mineralogy of Western Australian Salt Lake Sediments: Implications for Meridiani Planum on Mars. , 2016, Astrobiology.
[12] H. Edwards,et al. Potential for analysis of carbonaceous matter on Mars using Raman spectroscopy , 2014 .
[13] U. Bonnes,et al. Jarosite and Hematite at Meridiani Planum from Opportunity's Mössbauer Spectrometer , 2004, Science.
[14] M. Usman,et al. In situ monitoring of lepidocrocite bioreduction and magnetite formation by reflection Mössbauer spectroscopy , 2011 .
[15] J. Martínez-Frías,et al. Estudio espectroscópico y DRX de afloramientos terrestres volcánicos en la isla de Tenerife como posibles análogos de la geología marciana , 2015 .
[16] Ö. Helgason. Processes in Geophysics Studied by Mössbauer Spectroscopy , 2004 .
[17] A. Kappler,et al. Fe(III) mineral formation and cell encrustation by the nitrate‐dependent Fe(II)‐oxidizer strain BoFeN1 , 2005 .
[18] Dalva Lúcia Araújo de Faria,et al. Raman microspectroscopy of some iron oxides and oxyhydroxides , 1997 .
[19] R. V. Morris,et al. X-ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater , 2013, Science.
[20] D. Lovley,et al. Novel Mode of Microbial Energy Metabolism: Organic Carbon Oxidation Coupled to Dissimilatory Reduction of Iron or Manganese , 1988, Applied and environmental microbiology.
[21] U. Schwertmann,et al. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses , 2003 .
[22] R. Korotev,et al. Raman imaging of extraterrestrial materials , 2012 .
[23] Danyang Wang,et al. One-dimensional tunable ferroelectric photonic crystals based on Ba[sub 0.7]Sr[sub 0.3]TiO₃/MgO multilayer thin films , 2008 .
[24] A. Rosencwaig,et al. Mössbauer spectroscopy of stoichiometric and non-stoichiometric magnetite , 1969 .
[25] O. Shebanova,et al. Raman spectroscopic study of magnetite (FeFe2O4): a new assignment for the vibrational spectrum , 2003 .
[26] A. Kappler,et al. Secondary Mineral Formation During Ferrihydrite Reduction by Shewanella oneidensis MR-1 Depends on Incubation Vessel Orientation and Resulting Gradients of Cells, Fe2+ and Fe Minerals , 2015 .
[27] W. Wang,et al. Crystallite sizes and lattice parameters of nano-biomagnetite particles. , 2010, Journal of nanoscience and nanotechnology.
[28] J. Stubbs,et al. Products of abiotic U(VI) reduction by biogenic magnetite and vivianite , 2011 .
[29] C. Gorski,et al. Effects of oxyanions, natural organic matter, and bacterial cell numbers on the bioreduction of lepidocrocite (gamma-FeOOH) and the formation of secondary mineralization products. , 2010, Environmental science & technology.
[30] Frances Westall,et al. Missions to Mars: Characterization of Mars analogue rocks for the International Space Analogue Rockstore (ISAR) , 2013 .
[31] Frances Westall,et al. Testing the ability of the ExoMars 2018 payload to document geological context and potential habitability on Mars , 2015 .
[32] S. Carr,et al. Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria , 2015 .
[33] Juan Rodríguez-Carvajal,et al. Recent advances in magnetic structure determination by neutron powder diffraction , 1993 .
[34] A. Kudelski. Characterization of thiolate-based mono- and bilayers by vibrational spectroscopy: A review , 2005 .
[35] U. Bonnes,et al. Athena MIMOS II Mossbauer spectrometer investigation , 2003 .
[36] L. Rothschild,et al. Life in extreme environments , 2001, Nature.
[37] R. Zsigmondy. Kolloidchemie : ein Lehrbuch , 1912 .
[38] D. Lovley,et al. Availability of Ferric Iron for Microbial Reduction in Bottom Sediments of the Freshwater Tidal Potomac River , 1986, Applied and environmental microbiology.
[39] Charles S. Cockell,et al. Limitations to a microbial iron cycle on Mars , 2012 .
[40] P. Scherrer,et al. Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen , 1918 .
[41] R. Kukkadapu,et al. Secondary Mineralization Pathways Induced by Dissimilatory Iron Reduction of Ferrihydrite Under Advective Flow , 2003 .
[42] L. Stookey. Ferrozine---a new spectrophotometric reagent for iron , 1970 .
[43] C. Romanek,et al. Magnetite as a prokaryotic biomarker: A review , 2010 .
[44] J. Lloyd,et al. Control of nanoparticle size, reactivity and magnetic properties during the bioproduction of magnetite by Geobacter sulfurreducens , 2011, Nanotechnology.
[45] R. Blakemore. Magnetotactic bacteria , 1975, Science.
[46] D. Ming,et al. Iron mineralogy and aqueous alteration from Husband Hill through Home Plate at Gusev Crater, Mars: Results from the Mössbauer instrument on the Spirit Mars Exploration Rover , 2008 .
[47] Lisa Grossman. NASA urged to seek live Martians with 2020 rover , 2013 .
[48] R. Leveille,et al. Validation of astrobiology technologies and instrument operations in terrestrial analogue environments , 2009 .
[49] O. El-Kabbani,et al. Comparison of reaction centers from Rhodobacter sphaeroides and Rhodopseudomonas viridis: overall architecture and protein-pigment interactions. , 1991, Biochemistry.
[50] K. Straub,et al. Geomicrobiological cycling of iron , 2005 .
[51] Enrique Iañez-Pareja,et al. Magnetite biomineralization induced by Shewanella oneidensis , 2010 .
[52] A. Ferrari,et al. Raman spectroscopy of graphene and graphite: Disorder, electron phonon coupling, doping and nonadiabatic effects , 2007 .
[53] J. A. Rodríguez-Losada,et al. Micro‐Raman spectroscopic study of El Gasco pumice, western Spain , 2007 .
[54] G. M. da Costa,et al. Mössbauer characterization of iron oxides and (oxy)hydroxides: the present state of the art , 2000 .
[55] Juan Rodriguez-Carvaj,et al. Recent advances in magnetic structure determination neutron powder diffraction , 1993 .
[56] J. Gubicza,et al. Phase transition in nanomagnetite , 2008 .
[57] F. Widdel,et al. Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism , 1994, Applied and environmental microbiology.
[58] H. Edwards,et al. Comparative micro‐Raman study of the Nakhla and Vaca Muerta meteorites , 2004 .
[59] C. Mustin,et al. Bacterial and iron oxide aggregates mediate secondary iron mineral formation: green rust versus magnetite , 2010, Geobiology.
[60] J. A. Rodríguez-Losada,et al. Raman-Mössbauer-XRD studies of selected samples from “Los Azulejos” outcrop: A possible analogue for assessing the alteration processes on Mars , 2016 .
[61] S. Benner,et al. Competing Fe (II)-induced mineralization pathways of ferrihydrite. , 2005, Environmental science & technology.
[62] D. Ming,et al. Mineralogy at Gusev Crater from the Mössbauer Spectrometer on the Spirit Rover , 2004, Science.
[63] G. M. Costa,et al. INFLUENCE OF NONSTOICHIOMETRY A N D THE PRESENCE OF MAGHEMITE ON THE MOSSBAUER SPECTRUM OF MAGNETITEt , 2006 .
[64] K. Porsch,et al. Dependence of microbial magnetite formation on humic substance and ferrihydrite concentrations , 2011 .
[65] E. Caetano,et al. Identification of lamivudine conformers by Raman scattering measurements and quantum chemical calculations. , 2007, Journal of pharmaceutical and biomedical analysis.