A Simple Proof for the Usefulness of Crossover in Black-Box Optimization
暂无分享,去创建一个
[1] William F. Punch,et al. Fast and Efficient Black Box Optimization Using the Parameter-less Population Pyramid , 2015, Evolutionary Computation.
[2] Benjamin Doerr,et al. Optimal Parameter Choices via Precise Black-Box Analysis , 2016, GECCO.
[3] Dogan Corus,et al. Standard Steady State Genetic Algorithms Can Hillclimb Faster Than Mutation-Only Evolutionary Algorithms , 2017, IEEE Transactions on Evolutionary Computation.
[4] Dirk Sudholt,et al. A New Method for Lower Bounds on the Running Time of Evolutionary Algorithms , 2011, IEEE Transactions on Evolutionary Computation.
[5] Pietro Simone Oliveto,et al. Standard steady state genetic algorithms can hillclimb faster than evolutionary algorithms using standard bit mutation , 2018, GECCO.
[6] Carsten Witt,et al. Tight Bounds on the Optimization Time of a Randomized Search Heuristic on Linear Functions† , 2013, Combinatorics, Probability and Computing.
[7] Benjamin Doerr,et al. From black-box complexity to designing new genetic algorithms , 2015, Theor. Comput. Sci..
[8] Per Kristian Lehre,et al. Black-Box Search by Unbiased Variation , 2010, GECCO '10.
[9] Benjamin Doerr,et al. Optimal Static and Self-Adjusting Parameter Choices for the (1+(λ,λ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$( , 2017, Algorithmica.
[10] Carola Doerr,et al. Towards a More Practice-Aware Runtime Analysis of Evolutionary Algorithms , 2017, ArXiv.
[11] Benjamin Doerr,et al. The Impact of Random Initialization on the Runtime of Randomized Search Heuristics , 2015, Algorithmica.
[12] Per Kristian Lehre,et al. Faster black-box algorithms through higher arity operators , 2010, FOGA '11.
[13] Dirk Sudholt,et al. Crossover speeds up building-block assembly , 2012, GECCO '12.
[14] Dirk Sudholt,et al. How Crossover Speeds up Building Block Assembly in Genetic Algorithms , 2014, Evolutionary Computation.
[15] Benjamin Doerr,et al. Crossover can provably be useful in evolutionary computation , 2012, Theor. Comput. Sci..
[16] Thomas Jansen,et al. The Analysis of Evolutionary Algorithms—A Proof That Crossover Really Can Help , 2002, Algorithmica.
[17] Thomas Jansen,et al. Analysis of evolutionary algorithms: from computational complexity analysis to algorithm engineering , 2011, FOGA '11.