Estimating Local Compliance in a Beam From Bending Measurements Part II. Optimal Estimation of Local Compliance
暂无分享,去创建一个
[1] R. L. Eubank,et al. A Kalman Filter Primer , 2007 .
[2] F. E. Woeste,et al. Stochastic Model for Modulus of Elasticity of Lumber , 1986 .
[3] T. Başar,et al. A New Approach to Linear Filtering and Prediction Problems , 2001 .
[4] D. Earl Kline,et al. Comparing length effect models for lumber tensile strength , 1992 .
[5] Katsuhiko Ogata,et al. Discrete-time control systems , 1987 .
[6] D. Pope,et al. A comparison of deconvolution techniques to improve MOR estimation from stress grading machine output , 1995, Wood Science and Technology.
[7] John G. Proakis,et al. Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..
[8] J. D. Barrett,et al. Modified algorithm to determine localized modulus of elasticity of lumber , 2004, Wood Science and Technology.
[9] Bernard Friedland,et al. Linear Systems , 1965 .
[10] Azriel Rosenfeld,et al. Digital Picture Processing , 1976 .
[11] Thomas Kailath,et al. Linear Systems , 1980 .
[12] E. Guillemin. The mathematics of circuit analysis , 1965 .
[13] D. B. Houghton. Mathematics of circuit analysis , 1949 .
[14] Donald A. Bender,et al. LOCALIZED TENSILE STRENGTH AND MODULUS OF ELASTICITY OF E-RELATED LAMINATING GRADES OF LUMBER , 2007 .
[15] D. Bender,et al. A method for simulating mulitple correlated lumber properties , 1989 .
[16] Donald A. Bender,et al. Stochastic Model for Localized Tensile Strength and Modulus of Elasticity in Lumber , 1991 .
[17] Ali H. Sayed,et al. Linear Estimation (Information and System Sciences Series) , 2000 .
[18] R. Hernandez,et al. Probabilistic Modeling of Glued-Laminated Timber Beams , 2007 .