On Σ11-complete equivalence relations on the generalized Baire space
暂无分享,去创建一个
[2] Jouko Väänänen,et al. Trees and -subsets of ω1 ω 1 , 1993 .
[3] W. Hodges. CLASSIFICATION THEORY AND THE NUMBER OF NON‐ISOMORPHIC MODELS , 1980 .
[4] Julia F. Knight,et al. Classes of structures with universe a subset of ω1 , 2013, J. Log. Comput..
[5] Sy-David Friedman,et al. Generalized Descriptive Set Theory and Classification Theory , 2012, 1207.4311.
[6] Aapo Halko. Negligible subsets of the generalized Baire space ω_1^ω_1 , 1996 .
[7] H. Rogers,et al. Descriptive Set Theory in L ω 1 ω , 1982 .
[8] Luca Motto Ros. The descriptive set-theoretical complexity of the embeddability relation on models of large size , 2013, Ann. Pure Appl. Log..
[9] Saharon Shelah,et al. Constructing Strongly Equivalent Nonisomorphic Models for Unsuperstable Theories, Part B , 1995, J. Symb. Log..
[10] Tapani Hyttinen,et al. Borel* Sets in the Generalised Baire Space , 2012 .
[11] Jouko Väänänen,et al. Trees and Π 1 1 -Subsets of ω1 ω 1 , 1993 .
[12] David Blackwell,et al. Borel Sets Via Games , 1981 .
[13] F. Stephan,et al. Set theory , 2018, Mathematical Statistics with Applications in R.
[15] Tapani Hyttinen,et al. On the $\kappa$-cub game on $\lambda $ and $I[\lambda ]$ , 1999, Arch. Math. Log..
[16] Tapani Hyttinen,et al. Constructing Strongly Equivalent Nonisomorphic Models for Unstable Theories , 1991, Ann. Pure Appl. Log..
[17] Harvey M. Friedman,et al. A Borel reductibility theory for classes of countable structures , 1989, Journal of Symbolic Logic.