Counting Steps: A New Approach to Objective Probability in Physics

We propose a new interpretation of objective deterministic chances in statistical physics based on physical computational complexity. This notion applies to a single physical system (be it an experimental set--up in the lab, or a subsystem of the universe), and quantifies (1) the difficulty to realize a physical state given another, (2) the `distance' (in terms of physical resources) of a physical state from another, and (3) the size of the set of time--complexity functions that are compatible with the physical resources required to reach a physical state from another. This view (a) exorcises "ignorance" from statistical physics, and (b) underlies a new interpretation to non--relativistic quantum mechanics.

[1]  S. Massar,et al.  Measuring energy, estimating Hamiltonians, and the time-energy uncertainty relation , 2001, quant-ph/0110004.

[2]  Amit Hagar,et al.  A Philosopher Looks at Quantum Information Theory* , 2003, Philosophy of Science.

[3]  Lawrence Sklar,et al.  Physics and Chance , 1993 .

[4]  Avi Wigderson,et al.  Quantum vs. classical communication and computation , 1998, STOC '98.

[5]  M. Hogarth Non-Turing Computers and Non-Turing Computability , 1994, PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association.

[6]  William K. Wootters,et al.  Evolution without evolution: Dynamics described by stationary observables , 1983 .

[7]  C. Isham,et al.  Spacetime and the Philosophical Challenge of Quantum Gravity , 2001 .

[8]  John D. Norton,et al.  Exorcist XIV: The wrath of maxwell’s demon. Part II. from szilard to Landauer and beyond , 1999 .

[9]  F. G. KENYON,et al.  Time and Chance , 1943, Nature.

[10]  Jos Uffink,et al.  Subjective probability and statistical physics , 2009 .

[11]  Scott Aaronson,et al.  BQP and the polynomial hierarchy , 2009, STOC '10.

[12]  Andrew David Irvine Frege on Number Properties , 2010, Stud Logica.

[13]  C. Fuchs,et al.  Quantum probabilities as Bayesian probabilities , 2001, quant-ph/0106133.

[14]  J. Earman,et al.  Forever Is a Day: Supertasks in Pitowsky and Malament-Hogarth Spacetimes , 1993, Philosophy of Science.

[15]  D. Bohm,et al.  Time in the Quantum Theory and the Uncertainty Relation for Time and Energy , 1961 .

[16]  Craig Callender,et al.  Physics Meets Philosophy at the Planck Scale , 2001 .

[17]  James B. Hartle,et al.  Computability and physical theories , 1986, 1806.09237.

[18]  Scott Aaronson,et al.  The computational complexity of linear optics , 2010, STOC '11.

[19]  Joseph F. Traub,et al.  Complexity and information , 1999, Lezioni Lincee.

[20]  J. I. Cirac,et al.  Optimal simulation of nonlocal Hamiltonians using local operations and classical communication , 2001 .

[21]  L. Szilard On the decrease of entropy in a thermodynamic system by the intervention of intelligent beings. , 1964, Behavioral science.

[22]  J. Hartmanis,et al.  On the Computational Complexity of Algorithms , 1965 .

[23]  Itamar Pitowsky,et al.  On the status of statistical inferences , 1985, Synthese.

[24]  Itamar Pitowsky,et al.  Typicality and the Role of the Lebesgue Measure in Statistical Mechanics , 2012 .

[25]  Meir Hemmo,et al.  The Road to Maxwell's Demon , 2012 .

[26]  E. Hahn,et al.  Spin Echoes , 2011 .

[27]  Marian Boykan Pour-El,et al.  Computability in analysis and physics , 1989, Perspectives in Mathematical Logic.

[28]  Scott Aaronson,et al.  The Computational Complexity of Linear Optics , 2013, Theory Comput..

[29]  Asher Peres,et al.  Quantum Theory Needs No ‘Interpretation’ , 2000 .

[30]  Tim Maudlin,et al.  What could be objective about probabilities , 2007 .

[31]  C. Fuchs QBism, the Perimeter of Quantum Bayesianism , 2010, 1003.5209.

[32]  John A. Winnie Computable Chaos , 1992, Philosophy of Science.

[33]  R. Feynman Simulating physics with computers , 1999 .

[34]  R. Landauer The physical nature of information , 1996 .

[35]  S. Ulam,et al.  Studies of nonlinear problems i , 1955 .

[36]  I. Pitowsky,et al.  The Physical Church Thesis and Physical Computational Complexity , 2013 .

[37]  John Preskill,et al.  Quantum information and precision measurement , 1999, quant-ph/9904021.

[38]  Oron Shagrir,et al.  Physical Hypercomputation and the Church–Turing Thesis , 2003, Minds and Machines.

[39]  J. Cirac,et al.  Nonlocal Hamiltonian simulation assisted by local operations and classical communication , 2002 .

[40]  Itamar Pitowsky,et al.  Laplace's demon consults an oracle: The computational complexity of prediction , 1996 .