Numerical simulation of a flow-like landslide using the particle finite element method

In this paper, an actual landslide process that occurred in Southern China is simulated by a continuum approach, the particle finite element method (PFEM). The PFEM attempts to solve the boundary-value problems in the framework of solid mechanics, satisfying the governing equations including momentum conservation, displacement-strain relation, constitutive relation as well as the frictional contact between the sliding mass and the slip surface. To warrant the convergence behaviour of solutions, the problem is formulated as a mathematical programming problem, while the particle finite element procedure is employed to tackle the issues of mesh distortion and free-surface evolution. The whole procedure of the landslide, from initiation, sliding to deposition, is successfully reproduced by the continuum approach. It is shown that the density of the mass has little influence on the sliding process in the current landslide, whereas both the geometry and the roughness of the slip surface play important roles. Comparative studies are also conducted where a satisfactory agreement is obtained.

[1]  Kristian Krabbenhoft,et al.  Three-dimensional granular contact dynamics with rolling resistance , 2013 .

[2]  Andrei V. Lyamin,et al.  Computational Cam clay plasticity using second-order cone programming , 2012 .

[3]  Ha H. Bui,et al.  Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic–plastic soil constitutive model , 2008 .

[4]  Yu Huang,et al.  Large deformation and failure simulations for geo-disasters using smoothed particle hydrodynamics method , 2014 .

[5]  Manuel Pastor,et al.  A SPH Depth Integrated Model for Popocatepetl 2001 Lahar. , 2009 .

[6]  J. C. Cante,et al.  Particle Finite Element Methods in Solid Mechanics Problems , 2007 .

[7]  Marc Duflot,et al.  Meshless methods: A review and computer implementation aspects , 2008, Math. Comput. Simul..

[8]  Herbert Edelsbrunner,et al.  Three-dimensional alpha shapes , 1994, ACM Trans. Graph..

[9]  Eugenio Oñate,et al.  Modelling of tunnelling processes and rock cutting tool wear with the particle finite element method , 2013 .

[10]  Wei Chen,et al.  Numerical Simulations for Large Deformation of Granular Materials Using Smoothed Particle Hydrodynamics Method , 2012 .

[11]  Erling D. Andersen,et al.  On implementing a primal-dual interior-point method for conic quadratic optimization , 2003, Math. Program..

[12]  Qiang Xu,et al.  Run-out analysis of flow-like landslides triggered by the Ms 8.0 2008 Wenchuan earthquake using smoothed particle hydrodynamics , 2012, Landslides.

[13]  O. Hungr,et al.  A model for the analysis of rapid landslide motion across three-dimensional terrain , 2004 .

[14]  Adrian E. Scheidegger,et al.  On the prediction of the reach and velocity of catastrophic landslides , 1973 .

[15]  Andrei V. Lyamin,et al.  Granular contact dynamics with particle elasticity , 2012, Granular Matter.

[16]  Eugenio Oñate,et al.  The particle finite element method: a powerful tool to solve incompressible flows with free‐surfaces and breaking waves , 2004 .

[17]  Giovanni B. Crosta,et al.  Numerical Modeling of Large Landslide Stability and Runout , 2003 .

[18]  Zhao Chun-hong,et al.  Study on failure mechanism of a fill slope in Shenzhen , 2007 .

[19]  Kristian Krabbenhoft,et al.  A general non‐linear optimization algorithm for lower bound limit analysis , 2003 .

[20]  Gert Lube,et al.  Collapses of two-dimensional granular columns. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Massimiliano Cremonesi,et al.  A Lagrangian finite element approach for the analysis of fluid–structure interaction problems , 2010 .

[22]  Lydie Staron,et al.  Mobility of long-runout rock flows: a discrete numerical investigation , 2008 .

[23]  H. Huppert,et al.  Axisymmetric collapses of granular columns , 2004, Journal of Fluid Mechanics.

[24]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[25]  Andrei V. Lyamin,et al.  Granular contact dynamics using mathematical programming methods , 2012 .

[26]  S. Savage,et al.  The motion of a finite mass of granular material down a rough incline , 1989, Journal of Fluid Mechanics.

[27]  Lee Min Lee,et al.  Discrete element modeling of a rainfall-induced flowslide , 2012 .

[28]  Keith A. Holsapple Modeling granular material flows: The angle of repose, fluidization and the cliff collapse problem , 2013 .

[29]  Dieter Rickenmann,et al.  Runout prediction methods , 2005 .

[30]  E. Oñate,et al.  The particle finite element method. An overview , 2004 .

[31]  Jean-Pierre Vilotte,et al.  Numerical modeling of avalanches based on Saint-Venant equations using a kinetic scheme , 2003 .

[32]  Mark A Fleming,et al.  Meshless methods: An overview and recent developments , 1996 .

[33]  J. Oliver,et al.  PFEM-based modeling of industrial granular flows , 2014, CPM 2014.

[34]  Oldrich Hungr,et al.  A model for the runout analysis of rapid flow slides, debris flows, and avalanches , 1995 .

[35]  S. Sloan,et al.  Formulation and solution of some plasticity problems as conic programs , 2007 .

[36]  Kristian Krabbenhoft,et al.  Particle finite element analysis of the granular column collapse problem , 2014 .

[37]  Scott W. Sloan,et al.  Associated computational plasticity schemes for nonassociated frictional materials , 2012 .

[38]  L. F. Smoll,et al.  Investigation of the origin and magnitude of debris flows from the Payhua Creek basin, Matucana area, Huarochirí Province, Perú , 2005 .

[39]  M. Randolph,et al.  A practical numerical approach for large deformation problems in soil , 1998 .

[40]  Kuo-Jen Chang,et al.  The landslide stage of the Hsiaolin catastrophe: simulation and validation - supplement , 2011 .

[41]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[42]  H Chen,et al.  Numerical simulation of debris flows , 2000 .

[43]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[44]  Pierre-Yves Lagrée,et al.  The granular column collapse as a continuum: validity of a two-dimensional Navier–Stokes model with a μ(I)-rheology , 2011, Journal of Fluid Mechanics.

[45]  Wing Kam Liu,et al.  Meshfree and particle methods and their applications , 2002 .

[46]  E. Oñate,et al.  Possibilities of the particle finite element method for fluid–soil–structure interaction problems , 2011 .

[47]  Jyr‐Ching Hu,et al.  A kinematic model of the Hsiaolin landslide calibrated to the morphology of the landslide deposit , 2011 .

[48]  Jyr-Ching Hu,et al.  The Tsaoling landslide triggered by the Chi-Chi earthquake, Taiwan: Insights from a discrete element simulation , 2009 .

[49]  C. Goujon,et al.  Monodisperse dry granular flows on inclined planes: Role of roughness , 2003, The European physical journal. E, Soft matter.

[50]  Dong Wang,et al.  Particle finite element analysis of large deformation and granular flow problems , 2013 .

[51]  Giovanni B. Crosta,et al.  Small fast-moving flow-like landslides in volcanic deposits: The 2001 Las Colinas Landslide (El Salvador) , 2005 .

[52]  Eugenio Oñate,et al.  Advances in the particle finite element method for the analysis of fluid-multibody interaction and bed erosion in free surface flows , 2008 .

[53]  L. Cascini,et al.  SPH run-out modelling of channelised landslides of the flow type , 2014 .

[54]  Eugenio Oñate,et al.  Lagrangian analysis of multiscale particulate flows with the particle finite element method , 2014 .

[55]  O. Hungr,et al.  Landslide Risk Management , 2005 .

[56]  Eric Lajeunesse,et al.  Granular slumping on a horizontal surface , 2005 .

[57]  Jean-Pierre Vilotte,et al.  Spreading of a granular mass on a horizontal plane , 2004 .

[58]  P. Wriggers,et al.  An interior‐point algorithm for elastoplasticity , 2007 .