Stiffening solids with liquid inclusions

Solids embedded with fluid inclusions are intuitively softer than their pure counterparts. But experiments show that when the droplets are small enough, material can become stiffer—highlighting a role for surface tension.

[1]  T. Lecuit,et al.  Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis , 2007, Nature Reviews Molecular Cell Biology.

[2]  Ulrich S. Schwarz,et al.  Physics of adherent cells , 2013, 1309.2817.

[3]  S. H. Goods,et al.  Overview No. 1: The nucleation of cavities by plastic deformation , 1979 .

[4]  D Needham,et al.  A sensitive measure of surface stress in the resting neutrophil. , 1992, Biophysical journal.

[5]  Donald E Ingber,et al.  Quantifying cell-generated mechanical forces within living embryonic tissues , 2013, Nature Methods.

[6]  R. Ogden Non-Linear Elastic Deformations , 1984 .

[7]  Robert W Style,et al.  Patterning droplets with durotaxis , 2013, Proceedings of the National Academy of Sciences.

[8]  Bhushan Lal Karihaloo,et al.  Eshelby formalism for nano-inhomogeneities , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[9]  J. Cirac,et al.  Quantum simulation of the Schwinger model: A study of feasibility , 2014, 1407.4995.

[10]  André Zaoui,et al.  An extension of the self-consistent scheme to plastically-flowing polycrystals , 1978 .

[11]  E. Dickinson Emulsion gels: The structuring of soft solids with protein-stabilized oil droplets , 2012 .

[12]  A. Jagota,et al.  Solid surface tension measured by a liquid drop under a solid film , 2013, Proceedings of the National Academy of Sciences.

[13]  J. Rice A path-independent integral and the approximate analysis of strain , 1968 .

[14]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[15]  Y. Pomeau,et al.  Solid drops: large capillary deformations of immersed elastic rods. , 2013, Physical review letters.

[16]  Eric R. Dufresne,et al.  Static wetting on deformable substrates, from liquids to soft solids , 2012, 1203.1654.

[17]  Michael Shearer,et al.  Elastocapillary deformations on partially-wetting substrates: rival contact-line models. , 2014, Soft matter.

[18]  E. Dufresne,et al.  Surface tension and the mechanics of liquid inclusions in compliant solids. , 2014, Soft matter.

[19]  M. Ashby Overview No. 80: On the engineering properties of materials , 1989 .

[20]  R. Hill A self-consistent mechanics of composite materials , 1965 .

[21]  D. Weitz,et al.  Local shear transformations in deformed and quiescent hard-sphere colloidal glasses. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Su Ji Park,et al.  Visualization of asymmetric wetting ridges on soft solids with X-ray microscopy , 2014, Nature Communications.

[23]  John W. Hutchinson,et al.  Elastic-plastic behaviour of polycrystalline metals and composites , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[24]  R Shuttleworth,et al.  The Surface Tension of Solids , 1950 .

[25]  W. Marsden I and J , 2012 .

[26]  M Eastwood,et al.  Tensional homeostasis in dermal fibroblasts: Mechanical responses to mechanical loading in three‐dimensional substrates , 1998, Journal of cellular physiology.

[27]  S. Shtrikman,et al.  A variational approach to the theory of the elastic behaviour of multiphase materials , 1963 .

[28]  Zhen Cao,et al.  Adhesion and Wetting of Nanoparticles on Soft Surfaces , 2014 .

[29]  A. Jagota,et al.  Surface tension, surface energy, and chemical potential due to their difference. , 2013, Langmuir.

[30]  Bhushan Lal Karihaloo,et al.  A scaling law for properties of nano-structured materials , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[31]  K. Tanaka,et al.  Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .

[32]  Xavier Chateau,et al.  Coupling of elasticity to capillarity in soft aerated materials. , 2013, Soft matter.

[33]  Huiling Duan,et al.  A unified scheme for prediction of effective moduli of multiphase composites with interface effects. Part I: Theoretical framework , 2007 .

[34]  Morton E. Gurtin,et al.  A continuum theory of elastic material surfaces , 1975 .

[35]  M. Wegener,et al.  An elasto-mechanical unfeelability cloak made of pentamode metamaterials , 2014, Nature Communications.

[36]  Chung-Yuen Hui,et al.  Effects of surface tension on the adhesive contact of a rigid sphere to a compliant substrate. , 2014, Soft matter.

[37]  Z. Suo,et al.  Surface energy as a barrier to creasing of elastomer films: an elastic analogy to classical nucleation. , 2012, Physical review letters.

[38]  E. M. Lifshitz,et al.  Course in Theoretical Physics , 2013 .

[39]  Fuqian Yang Size-dependent effective modulus of elastic composite materials: Spherical nanocavities at dilute concentrations , 2004 .

[40]  John S. Wettlaufer,et al.  Surface tension and contact with soft elastic solids , 2013, Nature Communications.

[41]  Thomas Salez,et al.  From adhesion to wetting of a soft particle , 2013, 1309.1755.

[42]  Active elasticity of gels with contractile cells. , 2006, Physical review letters.

[43]  J. Palierne Linear rheology of viscoelastic emulsions with interfacial tension , 1990 .

[44]  Luc Dormieux,et al.  Hashin–Shtrikman bounds on the bulk modulus of a nanocomposite with spherical inclusions and interface effects , 2010 .

[45]  Pradeep Sharma,et al.  Size-Dependent Eshelby’s Tensor for Embedded Nano-Inclusions Incorporating Surface/Interface Energies , 2004 .

[46]  M. Chaudhury,et al.  Direct measurement of the surface tension of a soft elastic hydrogel: exploration of elastocapillary instability in adhesion. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[47]  R. Höhler,et al.  Rheology of liquid foam , 2005 .

[48]  E. Dufresne,et al.  Universal deformation of soft substrates near a contact line and the direct measurement of solid surface stresses. , 2012, Physical review letters.

[49]  R. G. Cox The deformation of a drop in a general time-dependent fluid flow , 1969, Journal of Fluid Mechanics.

[50]  D. Discher,et al.  Optimal matrix rigidity for stress fiber polarization in stem cells. , 2010, Nature physics.

[51]  B. Budiansky,et al.  Elastic moduli of a cracked solid , 1976 .

[52]  J. Willis,et al.  On cloaking for elasticity and physical equations with a transformation invariant form , 2006 .

[53]  B. Andreotti,et al.  Dynamic Contact Angle of a Soft Solid , 2014 .

[54]  Ty Phou,et al.  Capillarity driven instability of a soft solid. , 2010, Physical review letters.