Solar-energy conversion and light emission in an atomic monolayer p-n diode.

[1]  Aaron M. Jones,et al.  Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. , 2013, Nature nanotechnology.

[2]  P. Jarillo-Herrero,et al.  Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. , 2013, Nature nanotechnology.

[3]  P. Jarillo-Herrero,et al.  Electrically Tunable PN Diodes in a Monolayer Dichalcogenide , 2013 .

[4]  A. Neto,et al.  Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films. , 2013 .

[5]  Joerg Appenzeller,et al.  WSe2 field effect transistors with enhanced ambipolar characteristics , 2013 .

[6]  Andras Kis,et al.  Ultrasensitive photodetectors based on monolayer MoS2. , 2013, Nature nanotechnology.

[7]  Yoshihiro Iwasa,et al.  Formation of a stable p-n junction in a liquid-gated MoS2 ambipolar transistor. , 2013, Nano letters.

[8]  Wei Liu,et al.  Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. , 2013, Nano letters.

[9]  Xiaodong Xu,et al.  Magnetoelectric effects and valley-controlled spin quantum gates in transition metal dichalcogenide bilayers , 2013, Nature Communications.

[10]  Janna Börner,et al.  Real-time imaging of methane gas leaks using a single-pixel camera. , 2017, Optics express.

[11]  T. Fromherz,et al.  CMOS-compatible graphene photodetector covering all optical communication bands , 2013, Nature Photonics.

[12]  J. Appenzeller,et al.  High performance multilayer MoS2 transistors with scandium contacts. , 2013, Nano letters.

[13]  P. Avouris,et al.  Electroluminescence in single layer MoS2. , 2012, Nano letters.

[14]  Aaron M. Jones,et al.  Electrical control of neutral and charged excitons in a monolayer semiconductor , 2012, Nature Communications.

[15]  J. Shan,et al.  Tightly bound trions in monolayer MoS2. , 2012, Nature materials.

[16]  M. Fontana,et al.  Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions , 2012, Scientific Reports.

[17]  M. Paranjape,et al.  Abstract Submitted for the MAR13 Meeting of The American Physical Society Electron-hole transport and photovoltaic effect in gated MoS2 , 2013 .

[18]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[19]  A. Javey,et al.  High-performance single layered WSe₂ p-FETs with chemically doped contacts. , 2012, Nano letters.

[20]  Yu‐Chuan Lin,et al.  Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. , 2012, Nano letters.

[21]  Yoshihiro Iwasa,et al.  Ambipolar MoS2 thin flake transistors. , 2012, Nano letters.

[22]  Jong-Hyun Ahn,et al.  Extremely efficient flexible organic light-emitting diodes with modified graphene anode , 2012, Nature Photonics.

[23]  Arindam Ghosh,et al.  Nature of electronic states in atomically thin MoS₂ field-effect transistors. , 2011, ACS nano.

[24]  K. Novoselov,et al.  Strong plasmonic enhancement of photovoltage in graphene. , 2011, Nature communications.

[25]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[26]  Kwang S. Kim,et al.  Roll-to-roll production of 30-inch graphene films for transparent electrodes. , 2010, Nature nanotechnology.

[27]  Yi Jia,et al.  Graphene‐On‐Silicon Schottky Junction Solar Cells , 2010, Advanced materials.

[28]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[29]  F. Xia,et al.  Graphene photodetectors for high-speed optical communications , 2010, 1009.4465.

[30]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[31]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[32]  Paul L. McEuen,et al.  Supporting Online Material for Extremely Efficient Multiple Electron-Hole Pair Generation in Carbon Nanotube Photodiodes , 2009 .

[33]  D. Goldhaber-Gordon,et al.  Evidence for Klein tunneling in graphene p-n junctions. , 2008, Physical review letters.

[34]  K. Müllen,et al.  Transparent, conductive graphene electrodes for dye-sensitized solar cells. , 2008, Nano letters.

[35]  K. Novoselov,et al.  Chiral tunnelling and the Klein paradox in graphene , 2006, cond-mat/0604323.

[36]  A. Kapoor,et al.  Solar cell array parameters using Lambert W-function , 2006 .

[37]  Phaedon Avouris,et al.  Bright Infrared Emission from Electrically Induced Excitons in Carbon Nanotubes , 2005, Science.

[38]  K. Novoselov,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[40]  Stephen R. Forrest,et al.  The path to ubiquitous and low-cost organic electronic appliances on plastic , 2004, Nature.

[41]  A. Morpurgo,et al.  Organic single-crystal field-effect transistors , 2004, cond-mat/0404100.

[42]  V. Podzorov,et al.  High-mobility field-effect transistors based on transition metal dichalcogenides , 2004, cond-mat/0401243.

[43]  Ophir Vermesh,et al.  Hysteresis caused by water molecules in carbon nanotube field-effect transistors , 2003 .

[44]  M. Radosavljevic,et al.  Nonvolatile Molecular Memory Elements Based on Ambipolar Nanotube Field Effect Transistors , 2002, cond-mat/0206392.

[45]  A. Jayakumar,et al.  Exact analytical solution for current flow through diode with series resistance , 2000 .

[46]  C. Ferekides,et al.  Thin‐film CdS/CdTe solar cell with 15.8% efficiency , 1993 .

[47]  S. Wagner,et al.  pn junctions in tungsten diselenide , 1983 .