GPCR-G Protein-β-Arrestin Super-Complex Mediates Sustained G Protein Signaling

[1]  Y. Peterson,et al.  The conformational signature of arrestin3 predicts its trafficking and signaling functions , 2016, Nature.

[2]  Garth J. Williams,et al.  Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser , 2014, Nature.

[3]  H. Horiuchi Seven-transmembrane receptors , 2015 .

[4]  G. Skiniotis,et al.  2D Projection Analysis of GPCR Complexes by Negative Stain Electron Microscopy. , 2015, Methods in molecular biology.

[5]  Alexander S. Rose,et al.  Crystal structure of a common GPCR-binding interface for G protein and arrestin , 2014, Nature Communications.

[6]  J. Qian,et al.  Visualization of arrestin recruitment by a G Protein-Coupled Receptor , 2014, Nature.

[7]  T. Handel,et al.  The Chemokine Receptor CCR1 Is Constitutively Active, Which Leads to G Protein-independent, β-Arrestin-mediated Internalization* , 2013, The Journal of Biological Chemistry.

[8]  Dennis Brown,et al.  Noncanonical Control of Vasopressin Receptor Type 2 Signaling by Retromer and Arrestin* , 2013, The Journal of Biological Chemistry.

[9]  A. Kruse,et al.  Structure of active β-arrestin1 bound to a G protein-coupled receptor phosphopeptide , 2013, Nature.

[10]  Jonathan R. Tomshine,et al.  Conformational biosensors reveal GPCR signalling from endosomes , 2013, Nature.

[11]  J. Vilardaga,et al.  Noncanonical GPCR signaling arising from a PTH receptor–arrestin–Gβγ complex , 2013, Proceedings of the National Academy of Sciences.

[12]  M. Millecamps,et al.  Differential Association of Receptor-Gβγ Complexes with β-Arrestin2 Determines Recycling Bias and Potential for Tolerance of Delta Opioid Receptor Agonists , 2012, The Journal of Neuroscience.

[13]  S. Rasmussen,et al.  Crystal Structure of the β2Adrenergic Receptor-Gs protein complex , 2011, Nature.

[14]  T. Gardella,et al.  Retromer terminates the generation of cAMP by internalized PTH-receptors , 2011, Nature chemical biology.

[15]  Bin Wang,et al.  Sustained cyclic AMP production by parathyroid hormone receptor endocytosis. , 2009, Nature chemical biology.

[16]  M. Lohse,et al.  Persistent cAMP-Signals Triggered by Internalized G-Protein–Coupled Receptors , 2009, PLoS biology.

[17]  Cihan Çetin,et al.  Persistent signaling induced by FTY720-phosphate is mediated by internalized S1P1 receptors. , 2009, Nature chemical biology.

[18]  Necmettin Yildirim,et al.  β2-Adrenergic Receptor Signaling and Desensitization Elucidated by Quantitative Modeling of Real Time cAMP Dynamics* , 2008, Journal of Biological Chemistry.

[19]  S. Marullo,et al.  Resonance energy transfer approaches in molecular pharmacology and beyond. , 2007, Trends in pharmacological sciences.

[20]  S. Milano,et al.  Regulation of receptor trafficking by GRKs and arrestins. , 2007, Annual review of physiology.

[21]  Michel Bouvier,et al.  Probing the activation-promoted structural rearrangements in preassembled receptor–G protein complexes , 2006, Nature Structural &Molecular Biology.

[22]  M. Caron,et al.  The Stability of the G Protein-coupled Receptor-β-Arrestin Interaction Determines the Mechanism and Functional Consequence of ERK Activation* , 2003, The Journal of Biological Chemistry.

[23]  M. Lohse,et al.  Internalization Determinants of the Parathyroid Hormone Receptor Differentially Regulate β-Arrestin/Receptor Association* , 2002, The Journal of Biological Chemistry.

[24]  M. Caron,et al.  Molecular Determinants Underlying the Formation of Stable Intracellular G Protein-coupled Receptor-β-Arrestin Complexes after Receptor Endocytosis* , 2001, The Journal of Biological Chemistry.

[25]  S. Angers,et al.  Pharmacological chaperones rescue cell-surface expression and function of misfolded V2 vasopressin receptor mutants. , 2000, The Journal of clinical investigation.

[26]  M. Caron,et al.  Differential affinities of visual arrestin, beta arrestin1, and beta arrestin2 for G protein-coupled receptors delineate two major classes of receptors. , 2000, The Journal of biological chemistry.

[27]  M. Caron,et al.  Association of β-Arrestin with G Protein-coupled Receptors during Clathrin-mediated Endocytosis Dictates the Profile of Receptor Resensitization* , 1999, The Journal of Biological Chemistry.

[28]  Jie Zhang,et al.  The β2-adrenergic receptor/βarrestin complex recruits the clathrin adaptor AP-2 during endocytosis , 1999 .

[29]  M. Caron,et al.  The beta2-adrenergic receptor/betaarrestin complex recruits the clathrin adaptor AP-2 during endocytosis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[30]  J L Benovic,et al.  Agonist-Receptor-Arrestin, an Alternative Ternary Complex with High Agonist Affinity* , 1997, The Journal of Biological Chemistry.

[31]  J. Benovic,et al.  Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor. , 1996, Nature.

[32]  A. Gilman,et al.  G proteins: transducers of receptor-generated signals. , 1987, Annual review of biochemistry.

[33]  A. F. Muller,et al.  Vasopressin antagonists allow demonstration of a novel type of vasopressin receptor in the rat adenohypophysis. , 1986, Molecular pharmacology.

[34]  P. Simons,et al.  CGP-12177. A hydrophilic beta-adrenergic receptor radioligand reveals high affinity binding of agonists to intact cells. , 1983, The Journal of biological chemistry.

[35]  S. O'Donnell,et al.  Evidence that ICI 118, 551 is a potent, highly Beta 2-selective adrenoceptor antagonist and can be used to characterize Beta-adrenoceptor populations in tissues. , 1980, Life sciences.