Materials Acceleration Platforms: On the way to autonomous experimentation

[1]  Alán Aspuru-Guzik,et al.  ChemOS: An orchestration software to democratize autonomous discovery , 2020, PloS one.

[2]  Florian Häse,et al.  Gryffin: An algorithm for Bayesian optimization for categorical variables informed by physical intuition with applications to chemistry , 2020, ArXiv.

[3]  Ali Turan,et al.  Novel thermodynamic efficiency indices for choosing an optimal location for large-scale photovoltaic power generation , 2020 .

[4]  Trevor Hastie,et al.  The importance of transparency and reproducibility in artificial intelligence research , 2020, 2003.00898.

[5]  Alan Aspuru-Guzik,et al.  Graph Deconvolutional Generation , 2020, ArXiv.

[6]  Yong Lu,et al.  Prospects of organic electrode materials for practical lithium batteries , 2020, Nature Reviews Chemistry.

[7]  Jiagen Li,et al.  Toward “On‐Demand” Materials Synthesis and Scientific Discovery through Intelligent Robots , 2020, Advanced science.

[8]  K. Pardee,et al.  When robotics met fluidics. , 2020, Lab on a chip.

[9]  Jonathan Grizou,et al.  A curious formulation robot enables the discovery of a novel protocell behavior , 2020, Science Advances.

[10]  F. Hartl,et al.  Photo‐Assisted Electrocatalytic Reduction of CO2: A New Strategy for Reducing Catalytic Overpotentials , 2019, ChemCatChem.

[11]  Jun Hyuk Chang,et al.  III–V colloidal nanocrystals: control of covalent surfaces , 2019, Chemical science.

[12]  Ryan-Rhys Griffiths,et al.  Constrained Bayesian optimization for automatic chemical design using variational autoencoders , 2019, Chemical science.

[13]  Alán Aspuru-Guzik,et al.  Inverse Design of Solid-State Materials via a Continuous Representation , 2019, Matter.

[14]  E. Hertwich,et al.  Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies , 2019, Nature Communications.

[15]  Alán Aspuru-Guzik,et al.  Augmenting Genetic Algorithms with Deep Neural Networks for Exploring the Chemical Space , 2019, ICLR.

[16]  J. Gregoire,et al.  Progress and prospects for accelerating materials science with automated and autonomous workflows , 2019, Chemical science.

[17]  Alán Aspuru-Guzik,et al.  Beyond Ternary OPV: High‐Throughput Experimentation and Self‐Driving Laboratories Optimize Multicomponent Systems , 2019, Advanced materials.

[18]  Sorelle A. Friedler,et al.  Experiment Specification, Capture and Laboratory Automation Technology (ESCALATE): a software pipeline for automated chemical experimentation and data management , 2019, MRS Communications.

[19]  Pieter P. Plehiers,et al.  A robotic platform for flow synthesis of organic compounds informed by AI planning , 2019, Science.

[20]  Reiner Sebastian Sprick,et al.  Structurally Diverse Covalent Triazine-Based Framework Materials for Photocatalytic Hydrogen Evolution from Water , 2019, Chemistry of materials : a publication of the American Chemical Society.

[21]  A. Aspuru-Guzik,et al.  Self-driving laboratory for accelerated discovery of thin-film materials , 2019, Science Advances.

[22]  Alán Aspuru-Guzik,et al.  Next-Generation Experimentation with Self-Driving Laboratories , 2019, Trends in Chemistry.

[23]  Brian L. DeCost,et al.  Accelerated Development of Perovskite-Inspired Materials via High-Throughput Synthesis and Machine-Learning Diagnosis , 2018, Joule.

[24]  Alán Aspuru-Guzik,et al.  SELFIES: a robust representation of semantically constrained graphs with an example application in chemistry , 2019, ArXiv.

[25]  Reiner Sebastian Sprick,et al.  Accelerated Discovery of Organic Polymer Photocatalysts for Hydrogen Evolution from Water through the Integration of Experiment and Theory , 2019, Journal of the American Chemical Society.

[26]  Yu Ding,et al.  Phenothiazine‐Based Organic Catholyte for High‐Capacity and Long‐Life Aqueous Redox Flow Batteries , 2019, Advanced materials.

[27]  Leroy Cronin,et al.  Organic synthesis in a modular robotic system driven by a chemical programming language , 2019, Science.

[28]  S. Kawamura,et al.  Flexible Multifunctional Sensors for Wearable and Robotic Applications , 2019, Advanced Materials Technologies.

[29]  Huihuan Qian,et al.  AIR-Chem: Authentic Intelligent Robotics for Chemistry. , 2018, The journal of physical chemistry. A.

[30]  C. Ballif,et al.  Low-temperature processes for passivation and metallization of high-efficiency crystalline silicon solar cells , 2018, Solar Energy.

[31]  Regina Barzilay,et al.  Learning Multimodal Graph-to-Graph Translation for Molecular Optimization , 2018, ICLR.

[32]  Nataliya Sokolovska,et al.  CrystalGAN: Learning to Discover Crystallographic Structures with Generative Adversarial Networks , 2018, AAAI Spring Symposium: Combining Machine Learning with Knowledge Engineering.

[33]  Klavs F Jensen,et al.  Reconfigurable system for automated optimization of diverse chemical reactions , 2018, Science.

[34]  Noel M. O'Boyle,et al.  DeepSMILES: An Adaptation of SMILES for Use in Machine-Learning of Chemical Structures , 2018 .

[35]  Alán Aspuru-Guzik,et al.  Chimera: enabling hierarchy based multi-objective optimization for self-driving laboratories , 2018, Chemical science.

[36]  Alán Aspuru-Guzik,et al.  Phoenics: A Bayesian Optimizer for Chemistry , 2018, ACS central science.

[37]  Alán Aspuru-Guzik,et al.  Inverse molecular design using machine learning: Generative models for matter engineering , 2018, Science.

[38]  K. Jensen,et al.  Multistage Microfluidic Platform for the Continuous Synthesis of III-V Core/Shell Quantum Dots. , 2018, Angewandte Chemie.

[39]  Alán Aspuru-Guzik,et al.  ChemOS: Orchestrating autonomous experimentation , 2018, Science Robotics.

[40]  Jure Leskovec,et al.  Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation , 2018, NeurIPS.

[41]  Nicola De Cao,et al.  MolGAN: An implicit generative model for small molecular graphs , 2018, ArXiv.

[42]  Qi Liu,et al.  Constrained Graph Variational Autoencoders for Molecule Design , 2018, NeurIPS.

[43]  Alán Aspuru-Guzik,et al.  Accelerating the discovery of materials for clean energy in the era of smart automation , 2018, Nature Reviews Materials.

[44]  Martin D Burke,et al.  The Molecular Industrial Revolution: Automated Synthesis of Small Molecules. , 2018, Angewandte Chemie.

[45]  Mike Preuss,et al.  Planning chemical syntheses with deep neural networks and symbolic AI , 2017, Nature.

[46]  Tonio Buonassisi,et al.  Accelerating Materials Development via Automation, Machine Learning, and High-Performance Computing , 2018, Joule.

[47]  Daniel G. Goldstein,et al.  Manipulating and Measuring Model Interpretability , 2018, CHI.

[48]  Steven Skiena,et al.  Syntax-Directed Variational Autoencoder for Structured Data , 2018, ICLR.

[49]  Regina Barzilay,et al.  Junction Tree Variational Autoencoder for Molecular Graph Generation , 2018, ICML.

[50]  Leroy Cronin,et al.  Digitization of multistep organic synthesis in reactionware for on-demand pharmaceuticals , 2018, Science.

[51]  Gisbert Schneider,et al.  Automating drug discovery , 2017, Nature Reviews Drug Discovery.

[52]  Koji Tsuda,et al.  ChemTS: an efficient python library for de novo molecular generation , 2017, Science and technology of advanced materials.

[53]  Leroy Cronin,et al.  An autonomous organic reaction search engine for chemical reactivity , 2017, Nature Communications.

[54]  Alán Aspuru-Guzik,et al.  Parallel and Distributed Thompson Sampling for Large-scale Accelerated Exploration of Chemical Space , 2017, ICML.

[55]  Alán Aspuru-Guzik,et al.  Objective-Reinforced Generative Adversarial Networks (ORGAN) for Sequence Generation Models , 2017, ArXiv.

[56]  Marwin H. S. Segler,et al.  Neural-Symbolic Machine Learning for Retrosynthesis and Reaction Prediction. , 2017, Chemistry.

[57]  Matt J. Kusner,et al.  Grammar Variational Autoencoder , 2017, ICML.

[58]  Alán Aspuru-Guzik,et al.  Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules , 2016, ACS central science.

[59]  Alán Aspuru-Guzik,et al.  Convolutional Networks on Graphs for Learning Molecular Fingerprints , 2015, NIPS.

[60]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[61]  Martin D. Burke,et al.  Synthesis of many different types of organic small molecules using one automated process , 2015, Science.

[62]  Philip J. Kitson,et al.  Configurable 3D-Printed millifluidic and microfluidic 'lab on a chip' reactionware devices. , 2012, Lab on a chip.

[63]  Ashley A. White The Materials Genome Initiative: One year on , 2012 .

[64]  Bo Yu,et al.  Size estimation of chemical space: how big is it? , 2012, The Journal of pharmacy and pharmacology.

[65]  Kathryn Thompson,et al.  Rapid automated materials synthesis instrument: exploring the composition and heat-treatment of nanoprecursors toward low temperature red phosphors. , 2010, Journal of combinatorial chemistry.

[66]  Arnold Neumaier,et al.  SNOBFIT -- Stable Noisy Optimization by Branch and Fit , 2008, TOMS.

[67]  E. Garnsey,et al.  Commercializing Generic Technology: The Case of Advanced Materials Ventures , 2005 .

[68]  J. Friedman Stochastic gradient boosting , 2002 .

[69]  Jonathan S. Lindsey,et al.  A retrospective on the automation of laboratory synthetic chemistry , 1992 .

[70]  C. E. Berkoff,et al.  Chemical process optimization by computer — a self-directed chemical synthesis system , 1978 .

[71]  J. Stewart,et al.  Instrument for automated synthesis of peptides. , 1966, Analytical chemistry.

[72]  Leroy Cronin,et al.  Universal Chemical Synthesis and Discovery with ‘The Chemputer’ , 2020, Trends in Chemistry.

[73]  Martin D. Burke,et al.  Toward Generalization of Iterative Small Molecule Synthesis. , 2018, Nature reviews. Chemistry.

[74]  Alán Aspuru-Guzik,et al.  Materials Acceleration Platform: Accelerating Advanced Energy Materials Discovery by Integrating High-Throughput Methods and Artificial Intelligence. , 2018 .

[75]  M. Burke,et al.  Toward Generalization of Iterative Small Molecule Synthesis. , 2018, Nature reviews. Chemistry.