Mean-Shift-Based Speckle Filtering of Polarimetric SAR Data

The mean shift algorithm, which uses a moving window and utilizes both spatial and range information contained in an image, is widely employed in digital image filtering and segmentation. However, because of the large dynamic range of synthetic aperture radar (SAR) images, applying the conventional mean shift algorithm directly to SAR image filtering will not produce meaningful results. This paper proposes an adaptive variable asymmetric bandwidth selection approach to be used in a newly derived generalized mean shift algorithm. The proposed mean shift algorithm is very versatile and can be used for SAR and polarimetric SAR (PolSAR) image filtering directly without any preprocessing steps. Monte Carlo-simulated PolSAR data are used to demonstrate the effectiveness of the proposed algorithm in speckle filtering by comparing it with other filters. Experimental Synthetic Aperture Radar (ESAR) L-band and Radarsat-2 C-band PolSAR data are used to evaluate its ability to preserve the polarimetric information of PolSAR data. The effects of initial value estimating and multilook processing on the filtered results are discussed at the end of this paper.

[1]  H. Kile,et al.  Bandwidth Selection in Kernel Density Estimation , 2010 .

[2]  Robert P. W. Duin,et al.  On the Choice of Smoothing Parameters for Parzen Estimators of Probability Density Functions , 1976, IEEE Transactions on Computers.

[3]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Dorin Comaniciu,et al.  Real-time tracking of non-rigid objects using mean shift , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[5]  Gabriel Vasile,et al.  Imagerie Radar à Synthèse dOuverture interférométrique et polarimétrique. Application au suivi des glaciers alpins. , 2007 .

[6]  H. Zebker,et al.  Imaging radar polarization signatures: Theory and observation , 1987 .

[7]  Gabriel Vasile,et al.  Normalized Coherency Matrix Estimation Under the SIRV Model. Alpine Glacier Polsar Data Analysis , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[8]  Dorin Comaniciu,et al.  Mean shift analysis and applications , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[9]  María-Pilar Jarabo-Amores,et al.  Spatial-Range Mean-Shift Filtering and Segmentation Applied to SAR Images , 2011, IEEE Transactions on Instrumentation and Measurement.

[10]  J. Wade Davis,et al.  Statistical Pattern Recognition , 2003, Technometrics.

[11]  T. Cacoullos Estimation of a multivariate density , 1966 .

[12]  Eric Pottier,et al.  Application of the «H / A / α» Polarimetric Decomposition Theorem for Unsupervised Classification of Fully Polarimetric SAR Data Based on the Wishart Distribution , 2000 .

[13]  Wentao An,et al.  Nonlocal Filtering for Polarimetric SAR Data: A Pretest Approach , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[14]  A. Bowman An alternative method of cross-validation for the smoothing of density estimates , 1984 .

[15]  M. C. Jones,et al.  A reliable data-based bandwidth selection method for kernel density estimation , 1991 .

[16]  C. Quesenberry,et al.  A nonparametric estimate of a multivariate density function , 1965 .

[17]  Thomas L. Ainsworth,et al.  Improved Sigma Filter for Speckle Filtering of SAR Imagery , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[18]  Dorin Comaniciu,et al.  An Algorithm for Data-Driven Bandwidth Selection , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 34. NO. 4, JULY 1996 Universal Multifractal Scaling of Synthetic , 1996 .

[20]  Ridha Touzi,et al.  A review of speckle filtering in the context of estimation theory , 2002, IEEE Trans. Geosci. Remote. Sens..

[21]  M. Hazelton Variable kernel density estimation , 2003 .

[22]  Eric Pottier,et al.  An entropy based classification scheme for land applications of polarimetric SAR , 1997, IEEE Trans. Geosci. Remote. Sens..

[23]  Gabriel Vasile,et al.  Intensity-driven adaptive-neighborhood technique for polarimetric and interferometric SAR parameters estimation , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[24]  James Stephen Marron,et al.  Comparison of data-driven bandwith selectors , 1988 .

[25]  Larry D. Hostetler,et al.  The estimation of the gradient of a density function, with applications in pattern recognition , 1975, IEEE Trans. Inf. Theory.

[26]  van Zyl,et al.  On the Importance of Polarization in Radar Scattering Problems , 1986 .

[27]  Yizong Cheng,et al.  Mean Shift, Mode Seeking, and Clustering , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Gabriel Vasile,et al.  Coherency Matrix Estimation of Heterogeneous Clutter in High-Resolution Polarimetric SAR Images , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[29]  Lutgarde M. C. Buydens,et al.  KNN-kernel density-based clustering for high-dimensional multivariate data , 2006, Comput. Stat. Data Anal..

[30]  Laurent Ferro-Famil,et al.  Scattering-model-based speckle filtering of polarimetric SAR data , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[31]  E. Pottier,et al.  Polarimetric Radar Imaging: From Basics to Applications , 2009 .

[32]  M. C. Jones,et al.  A Brief Survey of Bandwidth Selection for Density Estimation , 1996 .

[33]  L. Breiman,et al.  Variable Kernel Estimates of Multivariate Densities , 1977 .

[34]  Dorin Comaniciu,et al.  The Variable Bandwidth Mean Shift and Data-Driven Scale Selection , 2001, ICCV.

[35]  Thomas L. Ainsworth,et al.  Speckle Filtering of Dual-Polarization and Polarimetric SAR Data based on Improved Sigma Filter , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[36]  R Vicen-Bueno,et al.  “Mean-Shift” filtering to reduce speckle noise in SAR images , 2009, 2009 IEEE Instrumentation and Measurement Technology Conference.

[37]  Jong-Sen Lee,et al.  Polarimetric SAR speckle filtering and its implication for classification , 1999, IEEE Trans. Geosci. Remote. Sens..