Modulation of secreted virulence factor genes by subinhibitory concentrations of antibiotics in Pseudomonas aeruginosa
暂无分享,去创建一个
M. Surette | K. Duan | Jinhua Wei | Lixin Shen | Ying Shi | Dan Zhang
[1] Grace Yim,et al. Antibiotics as signalling molecules , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.
[2] M. Surette,et al. Environmental Regulation of Pseudomonas aeruginosa PAO1 Las and Rhl Quorum-Sensing Systems , 2007, Journal of bacteriology.
[3] F. Baquero,et al. Antibiotics as intermicrobial signaling agents instead of weapons , 2006, Proceedings of the National Academy of Sciences.
[4] R. Geffers,et al. Quorum-Sensing Antagonistic Activities of Azithromycin in Pseudomonas aeruginosa PAO1: a Global Approach , 2006, Antimicrobial Agents and Chemotherapy.
[5] J. Davies. Are antibiotics naturally antibiotics? , 2006, Journal of Industrial Microbiology and Biotechnology.
[6] Jong-Soon Choi,et al. Proteome Analysis of Cellular Response of Pseudomonas putida KT2440 to Tetracycline Stress , 2006, Current Microbiology.
[7] G. O’Toole,et al. Rhamnolipids Modulate Swarming Motility Patterns of Pseudomonas aeruginosa , 2005, Journal of bacteriology.
[8] T. Horii,et al. Effects of Mupirocin at Subinhibitory Concentrations on Biofilm Formation in Pseudomonas aeruginosa , 2005, Chemotherapy.
[9] Michael J. MacCoss,et al. Aminoglycoside antibiotics induce bacterial biofilm formation , 2005, Nature.
[10] P. Sokol,et al. Identification of N-acylhomoserine lactones in mucopurulent respiratory secretions from cystic fibrosis patients. , 2005, FEMS microbiology letters.
[11] S. Beatson,et al. Sub‐inhibitory concentrations of ceftazidime and tobramycin reduce the quorum sensing signals of Pseudomonas aeruginosa , 2004, Pathology.
[12] D. Hassett,et al. The role of pyocyanin in Pseudomonas aeruginosa infection. , 2004, Trends in molecular medicine.
[13] T. Standiford,et al. Regulatory effects of macrolides on bacterial virulence: potential role as quorum-sensing inhibitors. , 2004, Current pharmaceutical design.
[14] A. P. Fonseca,et al. Effect of subinhibitory concentration of piperacillin/tazobactam on Pseudomonas aeruginosa. , 2004, Journal of medical microbiology.
[15] D. Turck,et al. Effect of subinhibitory concentrations of azithromycin on adherence of Pseudomonas aeruginosa to bronchial mucins collected from cystic fibrosis patients. , 2004, The Journal of antimicrobial chemotherapy.
[16] Martin Schuster,et al. Pseudomonas aeruginosa Biofilms Exposed to Imipenem Exhibit Changes in Global Gene Expression and β-Lactamase and Alginate Production , 2004, Antimicrobial Agents and Chemotherapy.
[17] D. Wozniak,et al. Effects of subinhibitory concentrations of macrolide antibiotics on Pseudomonas aeruginosa. , 2004, Chest.
[18] O. Käppeli,et al. Dependence of Pseudomonas aeruginosa continous culture biosurfactant production on nutritional and environmental factors , 1986, Applied Microbiology and Biotechnology.
[19] M. Surette,et al. Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication , 2003, Molecular microbiology.
[20] G. O’Toole,et al. Rhamnolipid Surfactant Production Affects Biofilm Architecture in Pseudomonas aeruginosa PAO1 , 2003, Journal of bacteriology.
[21] J. McClure,et al. Transcriptional modulation of bacterial gene expression by subinhibitory concentrations of antibiotics , 2002, Proceedings of the National Academy of Sciences of the United States of America.
[22] L. Thomashow,et al. Functional Analysis of Genes for Biosynthesis of Pyocyanin and Phenazine-1-Carboxamide from Pseudomonas aeruginosa PAO1 , 2001, Journal of bacteriology.
[23] K. Tateda,et al. Azithromycin Inhibits Quorum Sensing in Pseudomonas aeruginosa , 2001, Antimicrobial Agents and Chemotherapy.
[24] C. van Delden,et al. Swarming of Pseudomonas aeruginosa Is Dependent on Cell-to-Cell Signaling and Requires Flagella and Pili , 2000, Journal of bacteriology.
[25] S. Lory,et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen , 2000, Nature.
[26] B. Iglewski,et al. Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes , 1997, Journal of bacteriology.
[27] J. Reiser,et al. Isolation, characterization, and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. , 1994, The Journal of biological chemistry.
[28] E. Davies,et al. The quantitative distribution of nebulized antibiotic in the lung in cystic fibrosis. , 1994, Respiratory medicine.
[29] I. Crawford,et al. Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications , 1990, Journal of bacteriology.
[30] S. Cryz,et al. Isolation and characterization of Pseudomonas aeruginosa PAO mutant that produces altered elastase , 1980, Journal of bacteriology.
[31] A. Blackwood,et al. STUDIES ON THE BIOSYNTHESIS OF PYOCYANINE , 1962 .
[32] B. Holloway. Genetic recombination in Pseudomonas aeruginosa. , 1955, Journal of general microbiology.