Discrete maximum principle and a Delaunay-type mesh condition for linear finite element approximations of two-dimensional anisotropic diffusion problems

The finite element solution of two-dimensional anisotropic diffusion problems is considered. A Delaunay-type mesh condition is developed for linear finite element approximations to satisfy a discrete maximum principle. The condition is shown to be weaker than the existing anisotropic non-obtuse angle condition. It reduces to the well known Delaunay condition for the special case with the identity diffusion matrix. Numerical results are presented to verify the theoretical findings.

[1]  Ivar Aavatsmark,et al.  Discretization on Unstructured Grids For Inhomogeneous, Anisotropic Media. Part II: Discussion And Numerical Results , 1998, SIAM J. Sci. Comput..

[2]  Richard Liska,et al.  Enforcing the Discrete Maximum Principle for Linear Finite Element Solutions of Second-Order Elliptic Problems , 2007 .

[3]  Todd F. Dupont,et al.  Failure of the discrete maximum principle for an elliptic finite element problem , 2004, Math. Comput..

[4]  G. Stoyan,et al.  On a Maximum Principle for Matrices, and on Conservation of Monotonicity. With Applications to Discretization Methods , 1982 .

[5]  Ludmil T. Zikatanov,et al.  A monotone finite element scheme for convection-diffusion equations , 1999, Math. Comput..

[6]  Sibylle Günter,et al.  A mixed implicit-explicit finite difference scheme for heat transport in magnetised plasmas , 2009, J. Comput. Phys..

[7]  Weizhang Huang,et al.  An anisotropic mesh adaptation method for the finite element solution of heterogeneous anisotropic diffusion problems , 2010, J. Comput. Phys..

[8]  Alexandre Ern,et al.  Discrete maximum principle for Galerkin approximations of the Laplace operator on arbitrary meshes , 2004 .

[9]  Gregory R. King,et al.  Basic Applied Reservoir Simulations , 2001 .

[10]  Christophe Le Potier,et al.  Schéma volumes finis monotone pour des opérateurs de diffusion fortement anisotropes sur des maillages de triangles non structurés , 2005 .

[11]  Frank W. Letniowski,et al.  Three-Dimensional Delaunay Triangulations for Finite Element Approximations to a Second-Order Diffusion Operator , 1992, SIAM J. Sci. Comput..

[12]  Ivar Aavatsmark,et al.  Discretization on Unstructured Grids for Inhomogeneous, Anisotropic Media. Part I: Derivation of the Methods , 1998, SIAM J. Sci. Comput..

[13]  Mikhail Shashkov,et al.  A constrained finite element method satisfying the discrete maximum principle for anisotropic diusion problems on arbitrary meshes. , 2008 .

[14]  Sibylle Günter,et al.  Modelling of heat transport in magnetised plasmas using non-aligned coordinates , 2005 .

[15]  J. Pain Plasma Physics , 1968, Nature.

[16]  Daniil Svyatskiy,et al.  Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes , 2007, J. Comput. Phys..

[17]  Gisbert Stoyan,et al.  On maximum principles for monotone matrices , 1986 .

[18]  Christophe Le Potier,et al.  A nonlinear finite volume scheme satisfying maximum and minimum principles for diffusion operators , 2009 .

[19]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[20]  Peter A. Forsyth,et al.  A Control-Volume, Finite-Element Method for Local Mesh Refinement in Thermal Reservoir Simulation , 1990 .

[21]  Sergey Korotov,et al.  The discrete maximum principle for linear simplicial finite element approximations of a reaction-diffusion problem , 2008 .

[22]  Prateek Sharma,et al.  Preserving monotonicity in anisotropic diffusion , 2007, J. Comput. Phys..

[23]  Sergey Korotov,et al.  Dissection of the path-simplex in R-n into n path-subsimplices , 2007 .

[24]  T. H. Stix Waves in plasmas , 1992 .

[25]  Antony Ware,et al.  Discretisation and Multigrid Solution of Elliptic Equations with Mixed Derivative Terms and Strongly Discontinuous Coefficients , 1995 .

[26]  Dimitrios Alexios Karras,et al.  New PDE-based methods for image enhancement using SOM and Bayesian inference in various discretization schemes , 2009 .

[27]  D. M. Y. Sommerville,et al.  An Introduction to The Geometry of N Dimensions , 2022 .

[28]  Sergey Korotov,et al.  Discrete maximum principles for finite element solutions of nonlinear elliptic problems with mixed boundary conditions , 2005, Numerische Mathematik.

[29]  Tony F. Chan,et al.  Variational PDE models in image processing , 2002 .

[30]  Sergey Korotov,et al.  On discrete maximum principles for nonlinear elliptic problems , 2007, Math. Comput. Simul..

[31]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[32]  Sibylle Günter,et al.  Finite element and higher order difference formulations for modelling heat transport in magnetised plasmas , 2007, J. Comput. Phys..

[33]  Tony F. Chan,et al.  Nontexture Inpainting by Curvature-Driven Diffusions , 2001, J. Vis. Commun. Image Represent..

[34]  Philippe G. Ciarlet,et al.  Discrete maximum principle for finite-difference operators , 1970 .

[35]  Daniil Svyatskiy,et al.  A constrained finite element method satisfying the discrete maximum principle for anisotropic diffusion problems , 2009, J. Comput. Phys..

[36]  Richard S. Varga,et al.  On a Discrete Maximum Principle , 1966 .

[37]  Louis J. Durlofsky,et al.  Unstructured grid optimization for improved monotonicity of discrete solutions of elliptic equations with highly anisotropic coefficients , 2006, J. Comput. Phys..

[38]  Daniil Svyatskiy,et al.  Mesh Adaptation and Discrete Maximum Principle for 2 D Anisotropic Diffusion Problems , 2007 .

[39]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[40]  Christophe Le Potier,et al.  Un schéma linéaire vérifiant le principe du maximum pour des opérateurs de diffusion très anisotropes sur des maillages déformés , 2009 .

[41]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[42]  Sergey Korotov,et al.  Discrete maximum principles for finite element solutions of some mixed nonlinear elliptic problems using quadratures , 2006 .

[43]  P. G. Ciarlet,et al.  Maximum principle and uniform convergence for the finite element method , 1973 .