A 12-b 10-GS/s Interleaved Pipeline ADC in 28-nm CMOS Technology

A 12-bit 10-GS/s interleaved (IL) pipeline analog-to-digital converter (ADC) is described in this paper. The ADC achieves a signal to noise and distortion ratio (SNDR) of 55 dB and a spurious free dynamic range (SFDR) of 66 dB with a 4-GHz input signal, is fabricated in the 28-nm CMOS technology, and dissipates 2.9 W. Eight pipeline sub-ADCs are interleaved to achieve 10-GS/s sample rate, and mismatches between sub-ADCs are calibrated in the background. The pipeline sub-ADCs employ a variety of techniques to lower power, like avoiding a dedicated sample-and-hold amplifier (SHA-less), residue scaling, flash background calibration, dithering and inter-stage gain error background calibration. A push–pull input buffer optimized for high-frequency linearity drives the interleaved sub-ADCs to enable >7-GHz bandwidth. A fast turn-ON bootstrapped switch enables 100-ps sampling. The ADC also includes the ability to randomize the sub-ADC selection pattern to further reduce residual interleaving spurs.

[1]  Matthew Martin,et al.  A 14b 2.5GS/s 8-way-interleaved pipelined ADC with background calibration and digital dynamic linearity correction , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[2]  Gabriele Manganaro Advanced Data Converters: Index , 2011 .

[3]  Behzad Razavi,et al.  Design Considerations for Interleaved ADCs , 2013, IEEE Journal of Solid-State Circuits.

[4]  Phil Brown,et al.  A 16b 80MS/s 100mW 77.6dB SNR CMOS pipeline ADC , 2011, 2011 IEEE International Solid-State Circuits Conference.

[5]  Tai-Cheng Lee,et al.  27.7 A 10b 2.6GS/s time-interleaved SAR ADC with background timing-skew calibration , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[6]  Aaron Buchwald,et al.  Practical considerations for application specific time interleaved ADCs , 2015, 2015 IEEE Custom Integrated Circuits Conference (CICC).

[7]  I. Mehr,et al.  A 55-mW, 10-bit, 40-Msample/s Nyquist-rate CMOS ADC , 1999, IEEE Journal of Solid-State Circuits.

[8]  Fredrik Gustafsson,et al.  Blind adaptive equalization of mismatch errors in a time-interleaved A/D converter system , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[9]  P. R. Gray,et al.  A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter , 1999, IEEE J. Solid State Circuits.

[10]  Aaron Buchwald High-speed time interleaved ADCs , 2016, IEEE Communications Magazine.

[11]  Zhao Li,et al.  A 72 dB-DR 465 MHz-BW Continuous-Time 1-2 MASH ADC in 28 nm CMOS , 2016, IEEE Journal of Solid-State Circuits.

[12]  M El-Chammas,et al.  A 12-GS/s 81-mW 5-bit Time-Interleaved Flash ADC With Background Timing Skew Calibration , 2010, IEEE Journal of Solid-State Circuits.

[13]  I. Galton,et al.  A digitally enhanced 1.8-V 15-bit 40-MSample/s CMOS pipelined ADC , 2004, IEEE Journal of Solid-State Circuits.

[14]  P.R. Gray,et al.  A 14-b 12-MS/s CMOS pipeline ADC with over 100-dB SFDR , 2004, IEEE Journal of Solid-State Circuits.

[15]  Claudio Nani,et al.  A 480mW 2.6GS/s 10b 65nm CMOS time-interleaved ADC with 48.5dB SNDR up to Nyquist , 2011, 2011 IEEE International Solid-State Circuits Conference.

[16]  Muhammed Bolatkale,et al.  A 2.2 GHz Continuous-Time $\mathrm {\Delta \!\Sigma }$ ADC With −102 dBc THD and 25 MHz Bandwidth , 2016, IEEE Journal of Solid-State Circuits.

[17]  S. Devarajan,et al.  A 16-bit, 125 MS/s, 385 mW, 78.7 dB SNR CMOS Pipeline ADC , 2009, IEEE Journal of Solid-State Circuits.

[18]  Christian Vogel,et al.  The impact of combined channel mismatch effects in time-interleaved ADCs , 2005, IEEE Transactions on Instrumentation and Measurement.

[19]  Hae-Seung Lee,et al.  A 1 GS/s 10b 18.9 mW Time-Interleaved SAR ADC With Background Timing Skew Calibration , 2014, IEEE Journal of Solid-State Circuits.

[20]  Hajime Shibata,et al.  A DC-to-1 GHz Tunable RF Delta Sigma ADC Achieving DR = 74 dB and BW = 150 MHz at f0 = 450 MHz Using 550 mW , 2012, IEEE J. Solid State Circuits.

[21]  Boris Murmann,et al.  The Race for the Extra Decibel: A Brief Review of Current ADC Performance Trajectories , 2015, IEEE Solid-State Circuits Magazine.

[22]  Borivoje Nikolic,et al.  A 2.8 GS/s 44.6 mW Time-Interleaved ADC Achieving 50.9 dB SNDR and 3 dB Effective Resolution Bandwidth of 1.5 GHz in 65 nm CMOS , 2013, IEEE Journal of Solid-State Circuits.

[23]  Paul R. Gray,et al.  An 8-b 85-MS/s parallel pipeline A/D converter in 1- mu m CMOS , 1993 .

[24]  Qicheng Yu,et al.  A 14-bit 2.5GS/s and 5GS/s RF sampling ADC with background calibration and dither , 2016, 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits).

[25]  Elad Alon,et al.  A Wideband 400 MHz-to-4 GHz Direct RF-to-Digital Multimode $\Delta\Sigma$ Receiver , 2014, IEEE Journal of Solid-State Circuits.

[26]  Wenhua Yang,et al.  A 3-V 340-mW 14-b 75-Msample/s CMOS ADC with 85-dB SFDR at Nyquist input , 2001, IEEE J. Solid State Circuits.

[27]  Denis C. Daly,et al.  27.5 A 4GS/s time-interleaved RF ADC in 65nm CMOS with 4GHz input bandwidth , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[28]  Thomas Toifl,et al.  CMOS ADCs Towards 100 GS/s and Beyond , 2016, 2016 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).

[29]  R. Castello,et al.  A high-performance micropower switched-capacitor filter , 1985, IEEE Journal of Solid-State Circuits.