Solid state quantum computer development in silicon with single ion implantation

Spawned by the finding of efficient quantum algorithms, the development of a scalable quantum computer has emerged as a premiere challenge for nanoscience and nanotechnology in the last years. Spins of electrons and nuclei in 31P atoms embedded in silicon are promising quantum bit (qubit) candidates. In this article we describe single atom doping strategies and the status of our development of single atom qubit arrays integrated with control gates and readout structures in a “top down” approach. We discuss requirements for 31P qubit array formation by single ion implantation, and integration with semiconductor processing.

[1]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[2]  J. Holder,et al.  Extraction of highly charged ions from the electron beam ion trap at LBNL for applications in surface analysis and Materials Science , 2001 .

[3]  J. Marchiando,et al.  Comparison of experimental and theoretical scanning capacitance microscope signals and their impact on the accuracy of determined two-dimensional carrier profiles , 2002 .

[4]  Yasuo Takahashi,et al.  Mechanism of Potential Profile Formation in Silicon Single-Electron Transistors Fabricated Using Pattern-Dependent Oxidation , 2001 .

[5]  R. P. McKinnon,et al.  Nanofabrication processes for single-ion implantation of silicon quantum computer devices , 2001, SPIE Micro + Nano Materials, Devices, and Applications.

[6]  T. M. Buehler,et al.  Correlated charge detection for readout of a solid-state quantum computer , 2003 .

[7]  G. J. Milburn,et al.  Single Spin Measurement using Single Electron Transistors to Probe Two Electron Systems , 2000 .

[8]  R. Baragiola Principles and mechanisms of ion induced electron emission , 1993 .

[9]  M. Y. Simmons,et al.  Towards the fabrication of phosphorus qubits for a silicon quantum computer , 2001 .

[10]  J. Dabrowski,et al.  Mechanism of dopant segregation to SiO 2 / Si ( 001 ) interfaces , 2002 .

[11]  J. Tucker,et al.  Ultradense phosphorous delta layers grown into silicon from PH3 molecular precursors , 2002 .

[12]  R. Schoelkopf,et al.  Radio-frequency single-electron transistor: Toward the shot-noise limit , 2001 .

[13]  H. Puchner,et al.  Optimized subamorphizing silicon implants to modify diffusion and activation of arsenic, boron, and phosphorus implants for shallow junction creation , 1999 .

[14]  C. Yang,et al.  Ion-beam-induced-charge characterisation of particle detectors , 2002 .

[15]  A. Arnau,et al.  Interaction of slow multicharged ions with solid surfaces , 1997 .

[16]  B. E. Kane,et al.  Hydrogenic spin quantum computing in silicon: a digital approach. , 2002, Physical review letters.

[17]  Dopant dose loss at the Si–SiO2 interface , 2000 .

[18]  Yasuo Takahashi,et al.  Excellent charge offset stability in a Si-based single-electron tunneling transistor , 2001 .

[19]  H. Bracht Diffusion Mechanisms and Intrinsic Point-Defect Properties in Silicon , 2000 .

[20]  Jeffrey Bokor,et al.  Novel method for silicon quantum wire transistor fabrication , 1999 .

[21]  P. Griffin,et al.  Point defects and dopant diffusion in silicon , 1989 .

[22]  A. Hamza,et al.  Charge State Dependent Energy Loss of Slow Heavy Ions in Solids , 1997 .

[23]  D. Awschalom,et al.  Lateral drag of spin coherence in gallium arsenide , 1999, Nature.

[24]  Lov K. Grover,et al.  Quantum computation , 1999, Proceedings Twelfth International Conference on VLSI Design. (Cat. No.PR00013).

[26]  Takahiro Shinada,et al.  Reduction of Fluctuation in Semiconductor Conductivity by One-by-One Ion Implantation of Dopant Atoms , 2000 .

[27]  J. Ziegler,et al.  stopping and range of ions in solids , 1985 .

[28]  Michael J. Aziz,et al.  Ion-beam sculpting at nanometre length scales , 2001, Nature.

[29]  I. Rangelow,et al.  Progress on nanostructuring with Nanojet , 2000 .

[30]  W. Chu,et al.  Enhancement of electrical activation of ion‐implanted phosphorus in Si(100) through two‐step thermal annealing , 1993 .

[31]  A. Hamza,et al.  Interaction of slow, very highly charged ions with surfaces , 1999 .

[32]  P. Griffin,et al.  Fractional contributions of microscopic diffusion mechanisms for common dopants and self-diffusion in silicon , 1999 .

[33]  Masanobu Miyao,et al.  Correlation between lattice damage and electrical activation of phosphorus‐implanted silicon , 1978 .

[34]  Y. Yamazaki,et al.  STABILIZED HOLLOW IONS EXTRACTED IN VACUUM , 1997 .

[35]  Xuedong Hu,et al.  Exchange in silicon-based quantum computer architecture. , 2002, Physical review letters.

[36]  Single ion implantation for solid state quantum computer development , 2001 .