Systematics in the metal-insulator transition temperatures in vanadium oxides

Abstract Nine of the known vanadium oxides, VO 2 − 1 / n (n – a positive or negative integer) with n = 2 − 6 , 8 , 9 , ∞ and −6, undergo metal-insulator transitions accompanied by structural transitions, at various temperatures TMIT (V7O13 is metallic above T=0). Among the persistent efforts to determine the driving force(s) of these transitions, electron–electron (Mott-like) and electron–phonon (Peierls-like) interactions, there were several attempts to find systematics in TMIT as function of n. Here we present an unexpectedly simple and illuminating systematics that holds for positive n: if TMIT is the absolute value of the difference between TM(n) and TP(n), which represent the contributions of electron–electron and electron–phonon interactions, respectively, all data points of TM-TP versus 1/n lie on, or close to, two simple straight lines; one is T M − T P = T ∞ ( 7 / n − 1 ) for V3O5, V4O7, V5O9, V7O13, V8O15, V9O17 and VO2 and the other is T M − T P = T ∞ ( 3 / n − 1 ) for V2O3, V6O11 and VO2.

[1]  J. B. MacChesney,et al.  Growth and electrical properties of vanadium dioxide single crystals containing selected impurity ions , 1968 .

[2]  V. Andreev,et al.  Specific features of the electrical conductivity of V4O7 single crystals , 2009 .

[3]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[4]  P. Bongers Anisotropy of the electrical conductivity of VO2 single crystals , 1965 .

[5]  V. Andreev,et al.  Specific features of the electrical conductivity of V6O11 , 2013 .

[6]  V. Andreev,et al.  Specific features of electrical conductivity of V3O5 single crystals , 2011 .

[7]  Volker Eyert,et al.  The vanadium Magnéli phases V n O 2 n − 1 , 2004 .

[8]  N. Ōtsuka,et al.  Growth of single phase, single crystals of V9O17☆ , 1981 .

[9]  J. B. Goodenough,et al.  VO: A strongly correlated metal close to a Mott-Hubbard transition , 2007 .

[10]  J. Honig,et al.  Electrical properties of the ( V 1 − x Cr x ) 2 O 3 system , 1980 .

[11]  K. W. H. STEVENS,et al.  Physics of the Solid State , 1957, Nature.

[12]  K. Nagasawa Crystal growth of by the chemical transport reaction and electrical properties , 1971 .

[13]  V. Eyert,et al.  The vanadium Magnli phases VnO2n-1 , 2004, cond-mat/0403689.

[14]  S. Kachi,et al.  Metal-insulator transition in VnO2n−1 , 1973 .

[15]  A. Watanabe,et al.  A New Growing Method for VO2 Single Crystals , 1964 .

[16]  R. Cava Crystal structures of the high temperature forms of V{sub 8}O{sub 15} and V{sub 9}O{sub 17} and structural trends in the V{sub n}O{sub 2n-1} Magneli series , 2013 .

[17]  William Paul,et al.  Optical and transport properties of high quality crystals of V2O4 near the metallic transition temperature , 1969 .

[18]  P. Postorino,et al.  Optical properties across the insulator to metal transitions in vanadium oxide compounds , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[19]  K. Kosuge The phase diagram and phase transition of the V2O3−V2O5, system , 1967 .

[20]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[21]  John D. Budai,et al.  Metallization of vanadium dioxide driven by large phonon entropy , 2014, Nature.

[22]  B. Fisher,et al.  The metal-semiconductor transition temperautes in vanadium oxides , 1980 .

[23]  C. T. Anderson,et al.  The Heat Capacities of Vanadium, Vanadium Trioxide, Vanadium Tetroxide and Vanadium Pentoxide at Low Temperatures1 , 1936 .

[24]  J. P. Remeika,et al.  Metal-Insulator Transitions in Pure and Doped V 2 O 3 , 1973 .

[25]  F. J. Morin,et al.  Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature , 1959 .

[26]  H. Takagi,et al.  Charge transport near pressure-induced antiferromagnetic quantum critical point in Magnéli-phase vanadium oxides , 2003 .

[27]  F. A. Chudnovskii,et al.  Insulator-metal transition in V3O5 , 1978 .

[28]  J. Honig,et al.  The Metal-Insulator Transition in Selected Oxides , 1975 .