The Electroencephalogram and the Adaptive Autoregressive Model: Theory and Applications

ii iii iv v PREFACE The human species as conscious creatures seem to have something special, namely a particular organ-the brain-which can connect matter (physical entity) and mind (purely non-physical) to each other in both directions. For example, humans can assign a meaning to a physical entity; and they can also transform ideas into facts of the physical world. Through the brain, humans seem to be a kind of transformer between both worlds. However, a lot of mechanisms involved in this transformation have not been illuminated, yet. The field of computer science (with its implications from information theory, neural networks and the discussion about artificial intelligence) and biomedical engineering (with in vivo measurements of body reactions) can contribute to solving the unanswered questions in neuroscience. Especially the EEG, as a completely non-invasive technique, can be easily applied in real world situations of humans. Moreover, it can give an image of the whole brain, not only parts of it. For these reasons, EEG is a well-suited method for analyzing the functions of the human brain in real world situations. The English language, which I chose for this work, is not my native language. Despite extensive proofreading, mistakes as well as 'false friends' are probably not completely eliminated. I hope this does not constrain the understanding of the meaning of this work. and all other co-workers.

[1]  William W. S. Wei,et al.  Time series analysis - univariate and multivariate methods , 1989 .

[2]  Dennis J. McFarland,et al.  An EEG-based method for graded cursor control , 1993, Psychobiology.

[3]  James Durbin,et al.  The fitting of time series models , 1960 .

[4]  J. Hasan,et al.  Validation of computer analysed polygraphic patterns during drowsiness and sleep onset. , 1993, Electroencephalography and clinical neurophysiology.

[5]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[6]  G. Pfurtscheller,et al.  Using adaptive autoregressive parameters for a brain-computer-interface experiment , 1997, Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 'Magnificent Milestones and Emerging Opportunities in Medical Engineering' (Cat. No.97CH36136).

[7]  W. Herrmann,et al.  Kritische Bemerkungen zu den Regeln von Rechtschaffen und Kales über die visuelle Auswertung von EEG-Schlafableitungen , 1982 .

[8]  A. Schloegl Dynamic spectral analysis based on an autoregressive model with time-varying coefficients , 1995, Proceedings of 17th International Conference of the Engineering in Medicine and Biology Society.

[9]  David J. Spiegelhalter,et al.  Machine Learning, Neural and Statistical Classification , 2009 .

[10]  Jose C. Principe,et al.  SAMICOS-A Sleep Analyzing Microcomputer System , 1986, IEEE Transactions on Biomedical Engineering.

[11]  Jari P. Kaipio,et al.  Simulation of nonstationary EEG , 1997, Biological Cybernetics.

[12]  J R Smith,et al.  EEG sleep stage scoring by an automatic hybrid system. , 1971, Electroencephalography and clinical neurophysiology.

[13]  J R Smith,et al.  Detection of human sleep EEG waveforms. , 1975, Electroencephalography and clinical neurophysiology.

[14]  Paruchuri R. Krishnaiah,et al.  On the use of autoregressive order determination criteria in multivariate white noise tests , 1988, IEEE Trans. Acoust. Speech Signal Process..

[15]  P. Fenwick,et al.  Mathematical simulation of the electroencephalogram using an autoregressive series. , 1971, International journal of bio-medical computing.

[16]  G. Pfurtscheller,et al.  A criterion for adaptive autoregressive models , 2000, Proceedings of the 22nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Cat. No.00CH37143).

[17]  Gert Pfurtscheller,et al.  Artifact processing of the sleep EEG in the "SIESTA"-project , 1999 .

[18]  A. Wennberg,et al.  Computer analysis of EEG signals with parametric models , 1981, Proceedings of the IEEE.

[19]  M. Stone Cross-validation:a review 2 , 1978 .

[20]  Gert Pfurtscheller,et al.  Classification of Single trial EEG: A comparison of different parameters. , 1996 .

[21]  Gert Pfurtscheller,et al.  Hilbert-transform based predictions of hand movements from EEG measurements , 1992, 1992 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[22]  J Hasan,et al.  Past and future of computer-assisted sleep analysis and drowsiness assessment. , 1996, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[23]  B. Kemp,et al.  A proposal for computer‐based sleep/wake analysis , 1993, Journal of sleep research.

[24]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[25]  A. Loomis,et al.  Cerebral states during sleep, as studied by human brain potentials , 1937 .

[26]  H. Akaike A new look at the statistical model identification , 1974 .

[27]  P B Fenwick,et al.  The use of the autoregressive model in EEG analysis. , 1970, Electroencephalography and clinical neurophysiology.

[28]  A. Schlögl,et al.  Artifact Processing in Computerized Analysis of Sleep EEG – A Review , 1999, Neuropsychobiology.

[29]  W. Gersch Spectral analysis of EEG's by autoregressive decomposition of time series , 1970 .

[30]  J C Principe,et al.  A study on the best order for autoregressive EEG modelling. , 1987, International journal of bio-medical computing.

[31]  D. Skagen Estimation of running frequency spectra using a Kalman filter algorithm. , 1988, Journal of biomedical engineering.

[32]  H. Merica,et al.  A Neuronal Transition Probability Model for the Evolution of Power in the Sigma and Delta Frequency Bands of Sleep EEG , 1997, Physiology & Behavior.

[33]  E. Basar,et al.  Oscillatory brain theory: a new trend in neuroscience. , 1999, IEEE engineering in medicine and biology magazine : the quarterly magazine of the Engineering in Medicine & Biology Society.

[34]  William Bialek,et al.  Spikes: Exploring the Neural Code , 1996 .

[35]  B. Kemp,et al.  Optimal detection of the alpha state in a model of the human electroencephalogram. , 1981, Electroencephalography and clinical neurophysiology.

[36]  N. Wiener The Wiener RMS (Root Mean Square) Error Criterion in Filter Design and Prediction , 1949 .

[37]  D J McFarland,et al.  An EEG-based brain-computer interface for cursor control. , 1991, Electroencephalography and clinical neurophysiology.

[38]  G Pfurtscheller,et al.  EEG Classification by Learning Vector Quantization - EEG-Klassifikation mit Hilfe eines Learning Vector Quantizers , 1992, Biomedizinische Technik. Biomedical engineering.

[39]  G Pfurtscheller,et al.  Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters. , 1998, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[40]  James D. Hamilton Time Series Analysis , 1994 .

[41]  Gert Pfurtscheller,et al.  Considerations on Adaptive Autoregressive Modelling in EEG Analysis , 1998 .

[42]  G Pfurtscheller,et al.  Adaptive Autoregressive Modeling used for Single-trial EEG Classification - Verwendung eines Adaptiven Autoregressiven Modells für die Klassifikation von Einzeltrial-EEG-Daten , 1997, Biomedizinische Technik. Biomedical engineering.

[43]  T. Lagerlund,et al.  Spatial filtering of multichannel electroencephalographic recordings through principal component analysis by singular value decomposition. , 1997, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[44]  G. Baselli,et al.  Pole-tracking algorithms for the extraction of time-variant heart rate variability spectral parameters , 1995, IEEE Transactions on Biomedical Engineering.

[45]  J. G. Bryan,et al.  STATISTICAL METHODS IN FORECASTING , 1962 .

[46]  F. D. Silva Neural mechanisms underlying brain waves: from neural membranes to networks. , 1991 .

[47]  José Carlos Príncipe,et al.  The gamma-filter-a new class of adaptive IIR filters with restricted feedback , 1993, IEEE Trans. Signal Process..

[48]  J. Ware,et al.  Applications of Statistics , 1978 .

[49]  D. O. Walter,et al.  On automatic methods of sleep staging by EEG spectra. , 1970, Electroencephalography and clinical neurophysiology.

[50]  S. Thomas Alexander,et al.  Adaptive Signal Processing , 1986, Texts and Monographs in Computer Science.

[51]  B. Kemp,et al.  Model-based analysis of neurophysiological signals , 1991 .

[52]  S. Kubicki,et al.  Sleep EEG evaluation: a comparison of results obtained by visual scoring and automatic analysis with the Oxford sleep stager. , 1989, Sleep.

[53]  A. Rechtschaffen,et al.  A manual of standardized terminology, technique and scoring system for sleep stages of human subjects , 1968 .

[54]  N. Thakor,et al.  Dominant frequency analysis of EEG reveals brain's response during injury and recovery , 1996, IEEE Transactions on Biomedical Engineering.

[55]  Stephen A. Dyer,et al.  Digital signal processing , 2018, 8th International Multitopic Conference, 2004. Proceedings of INMIC 2004..

[56]  B. G. Quinn,et al.  The determination of the order of an autoregression , 1979 .

[57]  E. Hannan The Estimation of the Order of an ARMA Process , 1980 .

[58]  A Värri,et al.  Digital archival and exchange of events in a simple format for polygraphic recordings with application in event related potential studies. , 1998, Electroencephalography and clinical neurophysiology.

[59]  G. Bodenstein,et al.  Feature extraction from the electroencephalogram by adaptive segmentation , 1977, Proceedings of the IEEE.

[60]  J. S. Barlow,et al.  Changes in EEG mean frequency and spectral purity during spontaneous alpha blocking. , 1990, Electroencephalography and clinical neurophysiology.

[61]  J. Pilcher,et al.  Automatic analysis overcomes limitations of sleep stage scoring. , 1986, Electroencephalography and clinical neurophysiology.

[62]  G Pfurtscheller,et al.  Selection of electrode positions for an EEG-based Brain Computer Interface (BCI). Auswahl von Elektrodenpositionen für ein auf EEG-Ableitungen basierendes Brain Computer Interface (BCI) , 1994, Biomedizinische Technik. Biomedical engineering.

[63]  P B Fenwick,et al.  Application of the autoregressive model to E.E.G. analysis. , 1969, Agressologie: revue internationale de physio-biologie et de pharmacologie appliquees aux effets de l'agression.

[64]  G. Pfurtscheller,et al.  The effects of handedness and type of movement on the contralateral preponderance of mu-rhythm desynchronisation. , 1996, Electroencephalography and Clinical Neurophysiology.

[65]  F. L. D. Silva,et al.  Basic mechanisms of cerebral rhythmic activities , 1990 .

[66]  M. Kerkhofs,et al.  Automated sleep scoring: a comparative reliability study of two algorithms. , 1987, Electroencephalography and clinical neurophysiology.

[67]  Dennis J. McFarland,et al.  Design and operation of an EEG-based brain-computer interface with digital signal processing technology , 1997 .

[68]  J. Rissanen A UNIVERSAL PRIOR FOR INTEGERS AND ESTIMATION BY MINIMUM DESCRIPTION LENGTH , 1983 .

[69]  Gert Pfurtscheller,et al.  Spindle Filter Optimisation with Receiver Operating Characteristics-Curves , 1999 .

[70]  F. L. D. Silva,et al.  Event-related dynamics of alpha band rhythms: a neuronal network model of focal ERD-surround ERS , 1999 .

[71]  E. Wolpert A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects. , 1969 .

[72]  Ben H. Jansen,et al.  Autoregressive Estimation of Short Segment Spectra for Computerized EEG Analysis , 1981, IEEE Transactions on Biomedical Engineering.

[73]  Gert Pfurtscheller,et al.  SUBJECT SPECIFIC EEG PATTERNS DURING MOTOR IMAGINARY , 1997 .

[74]  G. Pfurtscheller,et al.  Design of an EEG-based Brain-Computer Interface (BCI) from Standard Components running in Real-time under Windows - Entwurf eines EEG-basierten Brain-Computer Interfaces (BCI) mit Standardkomponenten, das unter Windows in Echtzeit arbeitet , 1999, Biomedizinische Technik. Biomedical engineering.

[75]  F. L. D. Silva,et al.  EEG analysis: Theory and Practice , 1998 .

[76]  Jari P. Kaipio,et al.  Tracking of nonstationary EEG with the roots of ARMA models , 1995, Proceedings of 17th International Conference of the Engineering in Medicine and Biology Society.

[77]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[78]  D. B. Preston Spectral Analysis and Time Series , 1983 .

[79]  S Cerutti,et al.  Continuous monitoring of the sympatho-vagal balance through spectral analysis. , 1997, IEEE engineering in medicine and biology magazine : the quarterly magazine of the Engineering in Medicine & Biology Society.

[80]  T. Kailath,et al.  A state-space approach to adaptive RLS filtering , 1994, IEEE Signal Processing Magazine.

[81]  P.A. Karjalainen,et al.  Estimation of event-related synchronization changes by a new TVAR method , 1997, IEEE Transactions on Biomedical Engineering.

[82]  Antoine Rémond,et al.  Methods of Analysis of Brain Electrical and Magnetic Signals , 1987 .

[83]  Gert Pfurtscheller,et al.  Basic concepts on EEG synchronization and desynchronization , 1999 .

[84]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[85]  B. Kemp,et al.  Accurate measurement of flash-evoked alpha attenuation. , 1983, Electroencephalography and clinical neurophysiology.

[86]  W. M. Carey,et al.  Digital spectral analysis: with applications , 1986 .

[87]  H. Akaike A Bayesian extension of the minimum AIC procedure of autoregressive model fitting , 1979 .

[88]  Gert Pfurtscheller,et al.  Automated feature selection with a distinction sensitive learning vector quantizer , 1996, Neurocomputing.

[89]  M. B. Priestley,et al.  Non-linear and non-stationary time series analysis , 1990 .

[90]  James R. Zeidler,et al.  Adaptive tracking of linear time-variant systems by extended RLS algorithms , 1997, IEEE Trans. Signal Process..

[91]  M M Mesulam,et al.  Report of IFCN Committee on Basic Mechanisms. Basic mechanisms of cerebral rhythmic activities. , 1990, Electroencephalography and clinical neurophysiology.

[92]  Gert Pfurtscheller,et al.  CARDIAC FIELD ARTIFACT IN SLEEP EEG , 1999 .

[93]  G. Pfurtscheller,et al.  On-line EEG classification during externally-paced hand movements using a neural network-based classifier. , 1996, Electroencephalography and clinical neurophysiology.

[94]  A Värri,et al.  A simple format for exchange of digitized polygraphic recordings. , 1992, Electroencephalography and clinical neurophysiology.

[95]  W. Herrmann,et al.  The future of computer-assisted investigation of the polysomnogram: sleep microstructure. , 1996, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[96]  M S Mourtazaev,et al.  Age and gender affect different characteristics of slow waves in the sleep EEG. , 1995, Sleep.

[97]  J. Wolpaw,et al.  Multichannel EEG-based brain-computer communication. , 1994, Electroencephalography and clinical neurophysiology.

[98]  C. Braun,et al.  Adaptive AR modeling of nonstationary time series by means of Kalman filtering , 1998, IEEE Transactions on Biomedical Engineering.

[99]  Alfred L. Loomis,et al.  DISTRIBUTION OF DISTURBANCE-PATTERNS IN THE HUMAN ELECTROENCEPHALOGRAM, WITH SPECIAL REFERENCE TO SLEEP , 1938 .

[100]  J.C. Principe,et al.  Sleep staging automaton based on the theory of evidence , 1989, IEEE Transactions on Biomedical Engineering.

[101]  A Isaksson,et al.  Visual evaluation and computer analysis of the EEG--a comparison. , 1975, Electroencephalography and clinical neurophysiology.

[102]  S. Tseng,et al.  Evaluation of parametric methods in EEG signal analysis. , 1995, Medical engineering & physics.

[103]  F. Boiten,et al.  Event-related desynchronization: the effects of energetic and computational demands. , 1992, Electroencephalography and clinical neurophysiology.

[104]  S. Haykin,et al.  Adaptive Filter Theory , 1986 .

[105]  Juan C. Jiménez,et al.  Nonlinear EEG analysis based on a neural mass model , 1999, Biological Cybernetics.

[106]  G Florian,et al.  Dynamic spectral analysis of event-related EEG data. , 1995, Electroencephalography and clinical neurophysiology.

[107]  F. L. D. Silva,et al.  Event-related EEG/MEG synchronization and desynchronization: basic principles , 1999, Clinical Neurophysiology.

[108]  L. Zetterberg Estimation of parameters for a linear difference equation with application to EEG analysis , 1969 .

[109]  G. Grießbach,et al.  Parametrische Methoden der dynamischen Spektralanalyse und ihre Anwendung in der Biosignalanalyse , 1993 .

[110]  G Pfurtscheller,et al.  The use of an EEG autoregressive model for the time-saving calculation of spectral power density distributions with a digital computer. , 1972, Electroencephalography and clinical neurophysiology.

[111]  G. Pfurtscheller,et al.  Enhancement of left-right sensorimotor EEG differences during feedback-regulated motor imagery. , 1999, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[112]  G. Pfurtscheller,et al.  Event-related cortical desynchronization detected by power measurements of scalp EEG. , 1977, Electroencephalography and clinical neurophysiology.

[113]  G. Pfurtscheller,et al.  Rapid prototyping of an EEG-based brain-computer interface (BCI) , 2001, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[114]  G. Wittum,et al.  Adaptive filtering , 1997 .

[115]  Asbjørn Mohr Drewes,et al.  Ambulatory Recording and Power Spectral Analysis by Autoregressive Modelling of Polygraphic Sleep Signals in Patients Suffering from Chronic Pain , 1994, Methods of Information in Medicine.

[116]  B.H. Jansen,et al.  Knowledge-based approach to sleep EEG analysis-a feasibility study , 1989, IEEE Transactions on Biomedical Engineering.

[117]  G Pfurtscheller,et al.  Towards Automated Sleep Classification in Infants Using Symbolic and Subsymbolic Approaches - Automatische Schlafklassifikation bei Säuglingen mit Hilfe von symbolischen und subsymbolischen Methoden , 1993, Biomedizinische Technik. Biomedical engineering.

[118]  Jari P. Kaipio,et al.  Tracking of nonstationary EEG with the polynomial root perturbation , 1996, Proceedings of 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[119]  Gert Pfurtscheller,et al.  Brain-computer interface: a new communication device for handicapped persons , 1993 .

[120]  N. Kleitman,et al.  Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. , 1953, Science.

[121]  W. Dement,et al.  Cyclic variations in EEG during sleep and their relation to eye movements, body motility, and dreaming. , 1957, Electroencephalography and clinical neurophysiology.

[122]  G Pfurtscheller,et al.  Frequency dependence of the transmission of the EEG from cortex to scalp. , 1975, Electroencephalography and clinical neurophysiology.

[123]  Wolfgang Klimesch Event-related band power changes and memory performance , 1999 .

[124]  M Doppelmayr,et al.  A method for the calculation of induced band power: implications for the significance of brain oscillations. , 1998, Electroencephalography and clinical neurophysiology.

[125]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[126]  M. Jobert,et al.  System zur kontinuierlichen Digitalisierung und Auswertung von 32 Biosignalen bei Ganznacht-Schlafableitungen , 1989 .

[127]  G. Pfurtscheller,et al.  Quality control of polysomnographic sleep data by histogram and entropy analysis , 1999, Clinical Neurophysiology.

[128]  J R Wolpaw,et al.  EEG-based communication and control: short-term role of feedback. , 1998, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[129]  A. Hasman,et al.  Usefulness of autoregressive models to classify EEG segments , 2009 .

[130]  N. Levinson The Wiener (Root Mean Square) Error Criterion in Filter Design and Prediction , 1946 .

[131]  H. Akaike Fitting autoregressive models for prediction , 1969 .

[132]  H M Praetorius,et al.  Adaptive segmentation of EEG records: a new approach to automatic EEG analysis. , 1977, Electroencephalography and clinical neurophysiology.