Scalable algorithms for three-field mixed finite element coupled poromechanics

Abstract We introduce a class of block preconditioners for accelerating the iterative solution of coupled poromechanics equations based on a three-field formulation. The use of a displacement/velocity/pressure mixed finite-element method combined with a first order backward difference formula for the approximation of time derivatives produces a sequence of linear systems with a 3 × 3 unsymmetric and indefinite block matrix. The preconditioners are obtained by approximating the two-level Schur complement with the aid of physically-based arguments that can be also generalized in a purely algebraic approach. A theoretical and experimental analysis is presented that provides evidence of the robustness, efficiency and scalability of the proposed algorithm. The performance is also assessed for a real-world challenging consolidation experiment of a shallow formation.

[1]  Mary F. Wheeler,et al.  A coupling of mixed and continuous Galerkin finite element methods for poroelasticity I: the continuous in time case , 2007 .

[2]  J. Rice,et al.  Some basic stress diffusion solutions for fluid‐saturated elastic porous media with compressible constituents , 1976 .

[3]  Pieter A. Vermeer,et al.  An accuracy condition for consolidation by finite elements , 1981 .

[4]  Mohammad Reza Nikudel,et al.  Numerical simulation and prediction of regional land subsidence caused by groundwater exploitation in the southwest plain of Tehran, Iran , 2016 .

[5]  Dennis Eichmann,et al.  Theory Of Linear Poroelasticity , 2016 .

[6]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[7]  M.H.H. Hettema,et al.  Production-Induced Compaction of a Sandstone Reservoir: The Strong Influence of Stress Path , 2000 .

[8]  Tamara G. Kolda,et al.  An overview of the Trilinos project , 2005, TOMS.

[9]  Abimael F. D. Loula,et al.  On stability and convergence of finite element approximations of biot's consolidation problem , 1994 .

[10]  W. Bangerth,et al.  deal.II—A general-purpose object-oriented finite element library , 2007, TOMS.

[11]  Peter Arbenz,et al.  Large scale micro finite element analysis of 3D bone poroelasticity , 2014, Parallel Comput..

[12]  Ludmil T. Zikatanov,et al.  Stability and monotonicity for some discretizations of the Biot’s consolidation model , 2016 .

[13]  Lehua Pan,et al.  Fully coupled wellbore-reservoir modeling of geothermal heat extraction using CO2 as the working fluid , 2015 .

[14]  Andro Mikelić,et al.  Convergence of iterative coupling for coupled flow and geomechanics , 2013, Computational Geosciences.

[15]  Ruben Juanes,et al.  Coupled multiphase flow and poromechanics: A computational model of pore pressure effects on fault slip and earthquake triggering , 2014 .

[16]  Radim Blaheta,et al.  Displacement decomposition - incomplete factorization preconditioning techniques for linear elasticity problems , 1994, Numer. Linear Algebra Appl..

[17]  H. Elman,et al.  Efficient preconditioning of the linearized Navier-Stokes , 1999 .

[18]  Joachim Berdal Haga,et al.  On the causes of pressure oscillations in low‐permeable and low‐compressible porous media , 2012 .

[19]  Joshua A. White,et al.  Geomechanical behavior of the reservoir and caprock system at the In Salah CO2 storage project , 2014, Proceedings of the National Academy of Sciences.

[20]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[21]  Giuseppe Gambolati,et al.  Groundwater pumping and land subsidence in the Emilia‐Romagna coastland, Italy: Modeling the past occurrence and the future trend , 2006 .

[22]  Ronaldo I. Borja,et al.  Block-preconditioned Newton–Krylov solvers for fully coupled flow and geomechanics , 2011 .

[23]  Ruben Juanes,et al.  Stability, Accuracy, and Efficiency of Sequential Methods for Coupled Flow and Geomechanics , 2011 .

[24]  Chih-Jen Lin,et al.  Incomplete Cholesky Factorizations with Limited Memory , 1999, SIAM J. Sci. Comput..

[25]  Carlo Janna,et al.  A Block FSAI-ILU Parallel Preconditioner for Symmetric Positive Definite Linear Systems , 2010, SIAM J. Sci. Comput..

[26]  Ruben Juanes,et al.  A locally conservative finite element framework for the simulation of coupled flow and reservoir geomechanics , 2007 .

[27]  Joshua A. White,et al.  Accuracy and convergence properties of the fixed‐stress iterative solution of two‐way coupled poromechanics , 2015 .

[28]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[29]  E. Wilson,et al.  Flow of compressible fluid in porous elastic media , 1973 .

[30]  Jonathan J. Hu,et al.  ML 5.0 Smoothed Aggregation Users's Guide , 2006 .

[31]  Ivar Gustafsson,et al.  On parallel solution of linear elasticity problems: Part I: theory , 1998 .

[32]  Owe Axelsson,et al.  Stable discretization of poroelasticity problems and efficient preconditioners for arising saddle point type matrices , 2012, Comput. Vis. Sci..

[33]  J. Mandel Consolidation Des Sols (Étude Mathématique) , 1953 .

[34]  Anne Greenbaum,et al.  Any Nonincreasing Convergence Curve is Possible for GMRES , 1996, SIAM J. Matrix Anal. Appl..

[35]  Mary F. Wheeler,et al.  Convergence analysis of multirate fixed-stress split iterative schemes for coupling flow with geomechanics , 2016 .

[36]  M. Wheeler,et al.  Convergence of iterative coupling of geomechanics with flow in a fractured poroelastic medium , 2016, Computational Geosciences.

[37]  Ronaldo I. Borja,et al.  Stabilized low-order finite elements for coupled solid-deformation/fluid-diffusion and their application to fault zone transients , 2008 .

[38]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[39]  Nicola Castelletto,et al.  A coupled MFE poromechanical model of a large-scale load experiment at the coastland of Venice , 2014, Computational Geosciences.

[40]  J. Pasciak,et al.  A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems , 1988 .

[41]  B. Schrefler,et al.  The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media , 1998 .

[42]  A. Cheng,et al.  Mandel's problem revisited , 1996 .

[43]  H. A. Tchelepi,et al.  Discrete fracture model for coupled flow and geomechanics , 2016, Computational Geosciences.

[44]  Zu-jiang Luo,et al.  Finite Element Numerical Simulation of Land Subsidence and Groundwater Exploitation Based on Visco-Elasticplastic Biot’s Consolidation Theory , 2011 .

[45]  Giuseppe Gambolati,et al.  Numerical performance of projection methods in finite element consolidation models , 2001 .

[46]  Ajh Arjan Frijns,et al.  A four-component mixture theory applied to cartilaginous tissues : numerical modelling and experiments , 2000 .

[47]  Carlo Janna,et al.  FSAIPACK: A Software Package for High-Performance Factored Sparse Approximate Inverse Preconditioning , 2015, ACM Trans. Math. Softw..

[48]  Nicola Castelletto,et al.  A fully coupled 3-D mixed finite element model of Biot consolidation , 2010, J. Comput. Phys..

[49]  Nicola Castelletto,et al.  3D geomechanical modeling for CO2 geological storage in faulted formations. A case study in an offshore northern Adriatic reservoir, Italy , 2014 .

[50]  Giuseppe Gambolati,et al.  Ill-conditioning of finite element poroelasticity equations , 2001 .

[51]  Giuseppe Gambolati,et al.  The role of preconditioning in the solution to FE coupled consolidation equations by Krylov subspace methods , 2009 .

[52]  Nicola Castelletto,et al.  Thermo‐hydro‐mechanical modeling of fluid geological storage by Godunov‐mixed methods , 2012 .

[53]  Domenico Baù,et al.  Importance of poroelastic coupling in dynamically active aquifers of the Po River Basin, Italy , 2000 .

[54]  G. Gambolati,et al.  Geomechanical issues of anthropogenic CO2 sequestration in exploited gas fields , 2010 .

[55]  Carlo Janna,et al.  Enhanced Block FSAI Preconditioning Using Domain Decomposition Techniques , 2013, SIAM J. Sci. Comput..

[56]  H. Tchelepi,et al.  Stability and convergence of sequential methods for coupled flow and geomechanics: Fixed-stress and fixed-strain splits , 2011 .

[57]  Son-Young Yi Convergence analysis of a new mixed finite element method for Biot's consolidation model , 2014 .

[58]  Owe Axelsson,et al.  Iterative methods for the solution of the Naviers equations of elasticity , 1977 .

[59]  M. Biot General Theory of Three‐Dimensional Consolidation , 1941 .

[60]  J. C. Small,et al.  An investigation of the stability of numerical solutions of Biot's equations of consolidation , 1975 .

[61]  Daniel Moos,et al.  Numerical modeling of injection, stress and permeability enhancement during shear stimulation at the Desert Peak Enhanced Geothermal System , 2015 .

[62]  Andrew J. Wathen,et al.  Performance and analysis of saddle point preconditioners for the discrete steady-state Navier-Stokes equations , 2002, Numerische Mathematik.

[63]  Valeria Simoncini,et al.  Block triangular preconditioners for symmetric saddle-point problems , 2004 .

[64]  Luca Bergamaschi,et al.  RMCP: Relaxed Mixed Constraint Preconditioners for Saddle Point Linear Systems arising in Geomechanics , 2012 .

[65]  J. Geertsma,et al.  Problems of Rock Mechanics In Petroleum Production Engineering , 1966 .

[66]  Joshua A. White,et al.  Block-partitioned solvers for coupled poromechanics: A unified framework , 2016 .